全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

北半球大洋与大陆区域间大气质量分布的季节循环

, PP. 1519-1531

Keywords: 大气质量,季节循环,海陆间重新分布,海陆热力差异

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用NCEP/NCAR以及ERA-40再分析资料,对北半球大洋与大陆区域间大气质量分布的季节变化特征进行了分析,结果表明:随着季节更替,北半球大气质量存在显著的海陆间迁移.在7月份,欧亚大陆上空大气质量达到全年最小值,太平洋上空大气质量达到全年最大值.1月份海陆间大气质量分布情形与7月份相反.不同的是,大西洋上大气质量堆积在5月份达到最大.对于各大陆与海洋地区,大气质量堆积和亏损的维持与面积平均的大气质量通量散度以及蒸发和降水之差有关.纬向垂直环流随季节变化,在海陆间的上升和下沉方向发生改变,将海陆间大气运动联系了起来.海陆间的水汽含量亦存在明显的差异与季节循环,水汽含量可显著地影响大气对来自地表的长波辐射和太阳短波辐射的吸收,并进而影响大气的热力状况.北半球海陆热力差异包括非绝热加热率随季节改变而改变,影响着海陆间温度梯度的方向和大小,既有利于推动季风形成,亦推动了大气质量海陆间交换的季节循环.

References

[1]  康杜娟, 王会军. 2005. 中国北方沙尘暴气候形势的年代际变化. 中国科学D辑: 地球科学, 35: 1096-1102
[2]  卢楚翰, 管兆勇, 蔡佳熙. 2010. 夏季南北半球际大气质量涛动及其与季风异常的联系. 中国科学: 地球科学, 40: 802-809
[3]  施能, 陈辉, 谌芸. 2001. 北半球冬季大气活动中心的基本态特征及影响研究. 热带气象学报, 17: 215-222
[4]  陶诗言, 陈隆勋. 1957. 亚洲夏季大陆上空大气环流的结构. 气象学报, 28: 234-247
[5]  王绍武. 1962. 大气活动中心的多年变化. 气象学报, 31: 304-318
[6]  杨鑑初. 1956. 北半球大气质量的平均月际变化. 气象学报, 27: 37-59
[7]  曾庆存, 李建平. 2002. 南北两半球大气的相互作用和季风的本质. 大气科学, 26: 433-448
[8]  赵平, 陈军明, 肖栋, 等. 2008. 夏季亚洲-太平洋涛动与大气环流和季风降水. 气象学报, 66: 716-729
[9]  周秀骥, 徐祥德, 颜鹏, 等. 2002. 2000年春季沙尘暴动力学特征. 中国科学D辑: 地球科学, 32: 327-334
[10]  周玉淑, 高守亭, 邓国. 2005. 江淮流域2003年强梅雨期的水汽输送特征分析. 大气科学, 29: 195-204
[11]  朱抱真, 丁一汇, 罗会邦. 1990. 关于东亚大气环流和季风的研究. 气象学报, 48: 4-16
[12]  Carrera M L, Gyakum J R. 2003. Significant events of interhemispheric atmospheric mass exchange: Composite structure and evolution. J Clim, 16: 4061-4078
[13]  Carrera M L, Gyakum J R. 2007. Southeast Asian pressure surges and significant events of atmospheric mass loss from the northern hemisphere, and a case study analysis. J Clim, 20: 4678-4701
[14]  Chen T C, Chen J M, Schubert S, et al. 1997. Seasonal variation of global surface pressure and water vapor. Tellus Ser A-Dyn Meteorol Oceanol, 49: 613-621
[15]  Christy J R, Trenberth K E. 1985. Hemispheric interannual fluctuations in the distribution of atmospheric mass. J Geophys Res, 90: 8053-8065
[16]  Christy J R, Trenberth K E, Anderson J R. 1989. Large-scale redistributions of atmospheric mass. J Clim, 2: 137-148
[17]  Guan Z Y, Lu C H, Mei S L, et al. 2010. Seasonality of interannual inter-hemispheric oscillations over the past five decades. Adv Atmos Sci, 27: 1043-1050
[18]  Guan Z Y, Yamagata T. 2001. Interhemispheric oscillations in the surface air pressure field. Geophys Res Lett, 28: 263-266
[19]  Hoinka K P. 1998. Mean global surface pressure series evaluated from ECMWF reanalysis data. Q J R Meteorol Soc, 124: 2291-2297
[20]  Holl M M, Wolff P M, Bush Y A. 1988. Cross-equatorial air mass exchanges. Geophys Res Lett, 15: 1377-1380
[21]  Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteorol Soc, 77: 437-471
[22]  Liu Y M, Wu G X, Ren R C. 2004. Relationship between the subtropical anticyclone and diabatic heating. J Clim, 17: 682-698
[23]  Lorenz E N. 1951. Seasonal and irregular variations of the northern hemisphere sea-level pressure profile. J Atmos Sci, 8: 52-59
[24]  Luo H B, Yanai M. 1984. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets Monthly. Mon Weather Rev, 112: 966-989
[25]  Saha K, van den Dool H, Saha S. 1994. On the annual cycle in surface pressure on the Tibetan Plateau compared to its surroundings. J Clim, 7: 2014-2019
[26]  Trenberth K E. 1981. Seasonal variations in global sea level pressure and the total mass of the atmosphere. J Geophys Res, 86: 5238-5246
[27]  Trenberth K E, Christy J R. 1985. Global fluctuations in the distrbubion of atmospseric mass. J Geophys Res, 90: 8042-8052
[28]  Trenberth K E, Guillemot C J. 1994. The total mass of the atmosphere. J Geophys Res, 99: 23079-23088
[29]  Trenberth K E, Smith L. 2005. The mass of the atmosphere: A constraint on global analyses. J Clim, 18: 864-875
[30]  Uppala S M, K?llberg P W, Simmons A J, et al. 2005. The ERA-40 re-analysis. Q J R Meteorol Soc, 131: 2961-3012
[31]  Van Den Dool H, Saha S. 1993. Seasonal redistribution and conservation of atmospheric mass in a general circulation model. J Clim, 6: 22-30
[32]  Wu G X, Liu Y M. 2003. Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys Res Lett, 30: 1201-1204
[33]  Wu G X, Liu Y, Zhu X, et al. 2009. Multi-scale forcing and the formation of subtropical desert and monsoon. Ann Geophys-Germany, 27: 3631-3644
[34]  Wu G X, Liu Y M, He B, et al. 2012. Thermal controls on the Asian Summer Monsoon. Sci Rep, 2: 404
[35]  Zhao P, Zhu Y N, Zhang R H. 2007. An Asian-Pacific teleconnection in sunner tropospheric temperature and associated Asian climate variability. Clim Dyn, 29: 293-303
[36]  Zhao Y F, Li J P. 2006. Discrepancy of mass transport between the northern and southern hemispheres among the ERA-40, NCEP/NCAR, NCEP-DOE AMIP-2, and JRA-25 reanalysis. Geophys Res Lett, 33: L20804
[37]  刘屹岷, 刘辉, 刘平, 等. 1999. 空间非均匀加热对副热带高压带形成和变异的影响. Ⅱ. 陆面感热加热与东太平洋副高. 气象学报, 57: 385-396
[38]  卢楚翰, 管兆勇, 梅士龙, 等. 2008. 大气质量南北涛动的季节循环. 科学通报, 53: 2638-2645
[39]  卢楚翰, 管兆勇. 2009. 春季大气南北涛动年际变化及其与中国气候的联系. 自然科学进展, 19: 513-519

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133