全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

云南三营组宇宙成因核素埋藏年龄及成因

, PP. 1443-1451

Keywords: 三营组,埋藏年龄,宇宙成因核素,红河断裂,大理断裂系

Full-Text   Cite this paper   Add to My Lib

Abstract:

?三营组是一套河湖相沉积,沿红河断裂及其西北延伸线分布,主要出露在洱源附近.三营组中夹多层草煤,与下伏三叠系灰岩呈不整合接触,上覆第四纪砾石和松散沉积物.我们通过宇宙成因核素埋藏年龄法定量证明了三营组沉积于上新世,其顶部第四纪砾石层的宇宙成因核素埋藏年龄提供了三营组结束时间:>2Ma.从空间分布和沉积时间上看,三营组的形成与红河断裂和剑川断裂相关:中新世末期由于红河断裂和剑川断裂的触发,在洱源一带断裂拉张区形成断陷盆地,在红河断裂中南段一些拉张区也形成局部断陷湖盆,金沙江南流水系提供水源沉积了三营组.第四纪初期由于云岭山脉的隆起阻断了金沙江南去的水流,红河断裂带拉张区多数断陷湖盆干涸,结束了河湖相沉积.

References

[1]  虢顺民, 向宏发, 计凤桔, 等. 1996. 红河断裂带第四纪右旋走滑与尾端拉张转换关系研究. 地震地质, 18: 301-309
[2]  孔屏. 2012. 宇宙成因核素埋藏年龄法: 原理及应用. 第四纪研究, 32: 388-393
[3]  明庆忠, 史正涛, 张虎才. 2006. 三江并流区地貌与环境演化研究. 热带地理, 26: 119-122
[4]  陶君容, 孔昭宸. 1973. 云南饵源三营煤系的植物化石群和孢粉组合. 植物学报, 15: 120-126
[5]  王安建, 张克仁, 邹为雷, 等. 2003. 三江中南段矿产资源地质-环境-技术经济综合评价示范研究报告. 中国地质科学院矿产资源研究所
[6]  王书兵, 赵志中, 乔彦松, 等. 2006. 泸定昔格达组时代认定与古环境.第四纪研究, 26: 257-264
[7]  向宏发, 韩竹军, 虢顺民, 等. 2004. 红河断裂带大型右旋走滑运动定量研究的若干问题. 地球科学进展, 19: 56-59
[8]  向宏发, 张秉良, 张晚霞, 等. 2009. 剑川盆地第三纪以来地壳变形的地质分析与FT测年. 地质学报, 83: 230-238
[9]  姚海涛, 赵志中, 乔彦松, 等. 2007. 四川冕宁昔格达组磁性地层学初步研究及意义. 第四纪研究, 27: 74-84
[10]  云南省地质矿产局. 1990. 云南省区域地质志. 北京: 地质出版社
[11]  翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学D辑: 地球科学, 30: 129-137
[12]  Brookfield M E. 1998. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southwards. Geomorphology, 22: 285-312
[13]  Bruguier O, Lancelot J R, Malavieille J. 1997. U-Pb dating on single detrital zircon granites from the Triassic Songpan-Ganzi flysch (Central China): Provenance and tectonic correlations. Earth Planet Sci Lett, 152: 217-231
[14]  Chappell J, Zheng H, Fifield K. 2006. Yangtse River sediments and erosion rates from source to sink traced with cosmogenic 10Be: Sediments from major rivers. Palaeogeog Palaeoclimatol Palaeoecol, 241: 79-94
[15]  Dunai T J. 2010. Cosmogenic Nuclides: Principles, Concenpts and Applications in the Earth Surface Sciences. Cambridge: Cambridge University Press. 187
[16]  Enkelmann E, Weislogel A, Ratschbacher L, et al. 2007. How was the Triassic Songpan-Ganzi basin filled? A provenance study. Tectonics, 26: TC4007, doi: 10.1029/2006TC002078
[17]  Kong P, Zheng Y, Caffee M C. 2012. Provenance and time constraints on the formation of the first bend of the Yangtze River. Geochem Geophys Geosyst, 13: Q06017, doi: 10.1029/2012GC004140
[18]  Leloup P H, Harrison T M, Ryerson F J, et al. 1993. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan. J Geophys Res, 98: 6715-6743
[19]  Leloup P H, Lacassin R, Tapponnier P, et al. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251: 3-84
[20]  Li S, Deng C, Yao H, et al. 2013. Magnetostratigraphy of the Dali Basin in Yunnan and implications for Late Neogene rotation of the southeast margin of the Tibetan Plateau. J Geophys Res, 118: 791-807
[21]  Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189: 419-426
[22]  Nishiizumi K, Lal D, Klein J,et al. 1986. Production of 10Be and 26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates. Nature, 319: 134-136
[23]  Sun B N, Wu J Y, Liu Y S, et al. 2011. Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeog Palaeoclim Palaeoecol, 304: 328-336
[24]  Tapponnier P, Lacassin R, Leloup P H, et al. 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343: 431-437
[25]  Wang E, Burchfiel B C. 2000. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geol Soc Am Bull, 112: 413-423
[26]  Wang E, Burchfiel B C, Royden L H, et al. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geol Soc Am Spec Paper. 327: 1-108
[27]  Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev Earth Planet Sci, 28: 211-280
[28]  Fan C, Wang G, Wang S, et al. 2006. Structural interpretation of extensional deformation along the Dali fault system, southeastern margin of the Tibetan Plateau. Int Geol Rev, 48: 287-310
[29]  Gosse J C, Phillips F M. 2001. Terristrial in situ cosmogenic nuclides: Theory and application. Quat Sci Rev, 20: 1475-1560
[30]  Granger D E, Kirchner J W, Finkel R C, et al. 1997. Quaternary downcutting rate of the New River, Virginia, measured from different decay of cosmogenic 26Al and 10Be in cave-deposited alluvium. Geology, 25: 107-110
[31]  Granger D E, Muzikar P F. 2001. Dating sediment burial with in situ-produced cosmogenic nuclides: Theory, techniques, and limitations. Earth Planet Sci Lett, 188: 269-281
[32]  Kong P, Granger D, Wu F Y, et al. 2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River. Earth planet Sci Lett, 278: 131-141
[33]  Kong P, Zheng Y, Fu B. 2011. Cosmogenic nuclide burial ages and provenance of Late Cenozoic deposits in the Sichuan Basin: Implications for Early Quaternary glaciations in east Tibet. Quat Geochron, 6: 304-312

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133