全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

祁连山冻土区天然气水合物成藏体系中自生黄铁矿地球化学特征与成因探讨

, PP. 1283-1297

Keywords: 自生黄铁矿,裂隙型,天然气水合物,成藏体系,冻土区,祁连山

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在祁连山冻土区含天然气水合物或存在水合物异常的钻孔岩芯中发育一种半充填或者全充填岩石裂隙的自生黄铁矿,即“裂隙型”黄铁矿,其产状与在该地区发现的水合物产状具有一定的相似性,并且其分布主要集中于水合物层或异常层的下方区域.通过对祁连山冻土区天然气水合物钻探试验井DK-6孔含“裂隙型”黄铁矿岩芯样品开展黄铁矿形态学、微量、稀土元素和硫同位素组成研究发现,“裂隙型”黄铁矿具有沿岩石裂隙面呈台阶状定向排列的立方体形态黄铁矿为主并伴生“圆形”构造、较低的Co/Ni和Sr/Ba值、较低的ΣREE含量、LREE较HREE相对富集和明显的Eu负异常以及δ34SCDT值正偏等特征,这种独特的晶体形态和地球化学特征以及在空间上与水合物层或异常层间的分布关系均与祁连山冻土区天然气水合物成藏体系密切相关.由于气候变化是影响冻土区天然气水合物稳定性的一个重要因素,“裂隙型”黄铁矿可能是区域气候变暖背景下水合物发生次生变化的产物,其分布的密集程度反映了当水合物稳定带缩小时,底界处水合物分解最为强烈,而稳定带内水合物分解相对较弱,其分布的顶底界记录了天然气水合物稳定带曾存在的最大范围.

References

[1]  陈多福, 王茂春, 夏斌. 2005. 青藏高原冻土带天然气水合物的形成条件与分布预测. 地球物理学报, 48: 165-172
[2]  陈祈, 王家生, 魏清, 等. 2008. 综合大洋钻探计划311航次沉积物中自生黄铁矿及其硫稳定同位素研究. 现代地质, 22: 402-406
[3]  黄霞, 祝有海, 王平康, 等. 2011. 祁连山冻土区天然气水合物烃类气体组分特征及成因来源. 地质通报, 30: 1851-1856
[4]  匡耀求. 1993. 层控矿床成因类型的单矿物微量元素判别图解——以湖南泥盆系层控矿床为例. 地质与勘探, 2: 12-18
[5]  Wilkin R T, Arthur M A. 2001. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition. Geochim Cosmochim Acta, 65: 1399-1416
[6]  Zopfi J, B?ttcher M E, J?rgensen B B. 2000. Early diagenesis and isotope biogeochemistry of sulfur in Thioploca-dominated sediments off Chile. Doctoral Dissertation. Bremen: Bremen University. 85-109
[7]  刘晨晖. 2008. 东太平洋水合物海岭自生矿物成因及意义. 硕士论文. 北京: 中国地质大学
[8]  刘坚, 陆红锋, 廖志良, 等. 2005. 东沙海域浅层沉积物硫化物分布特征及其与天然气水合物的关系. 地学前缘, 12: 258-262
[9]  陆红锋, 陈芳, 刘坚, 等. 2006. 天然气水合物沉积环境的自生矿物特点及其在南海的发育情况. 南海地质研究, 93-104
[10]  陆红锋, 陈芳, 廖志良, 等. 2007. 南海东北部HD196A岩芯的自生条状黄铁矿. 地质学报, 81: 519-525
[11]  陆红锋, 孙晓明, 张美. 2011. 南海天然气水合物沉积物矿物学和地球化学. 北京: 科学出版社. 244
[12]  卢振权, 祝有海, 张永勤, 等. 2010a. 青海省祁连山冻土区天然气水合物基本地质特征. 矿床地质, 29: 182-191
[13]  卢振权, 祝有海, 张永勤, 等. 2010b. 青海祁连山冻土区天然气水合物资源量的估算方法—以钻探区为例. 地质通报, 29: 1310-1318
[14]  卢振权, 祝有海, 张永勤, 等. 2011. 青海祁连山冻土区天然气水合物的气体成因研究. 现代地质, 24: 581-588
[15]  潘语录, 田贵发, 栾安辉, 等. 2008. 测井方法在青海木里煤田冻土研究中的应用. 中国煤炭地质, 20: 7-9
[16]  蒲晓强, 钟少军, 于雯泉, 等. 2006. 南海北部陆坡NH-1孔沉积物自生硫化物及其硫同位素对深部甲烷和水合物存在的指示. 科学通报, 51: 2874-2880
[17]  王平康, 祝有海, 卢振权, 等. 2011. 祁连山冻土区天然气水合物岩性和分布特征. 地质通报, 30: 1839-1850
[18]  王绍令. 1994. 青藏高原多年冻土区水文地质特征. 青海地质, 1: 40-47
[19]  文怀军, 邵龙义, 李永红, 等. 2011. 青海省天峻县木里煤田聚乎更矿区构造轮廊和地层格架. 地质通报, 30: 1823-1828
[20]  叶荣, 涂光炽, 马喆生, 等. 2005. 热液矿床矿物微形貌与晶体生长环境研究. 地学前缘, 12: 240-246
[21]  祝有海, 刘亚玲, 张永勤. 2006. 祁连山多年冻土区天然气水合物的形成条件. 地质通报, 25: 58-63
[22]  祝有海, 张永勤, 文怀军, 等. 2009. 青海祁连山冻土区发现天然气水合物. 地质学报, 83: 1761-1770
[23]  Aharon P, Fu B. 2003. Sulfur and oxygen isotopes of coeval sulfate-sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chem Geol, 195: 201-218
[24]  Berner R A. 1985. Sulphate reduction, organic matter decomposition and pyrite formation. Philos Trans R Soc A-Math Phys Eng Sci, 315: 25-38
[25]  Berner R A. 2001. Modeling atmospheric O2 over Phanerozoic time. Geochim Cosmochim Acta, 65: 685-694
[26]  Boning P, Brumsack H J, B?ttcher M E, et al. 2004. Geochemistry of Peruvian near-surface sediments. Geochim Cosmochim Acta, 68: 4429-4451
[27]  Borowski W S. 1998. Pore-water sulfate concentration gradients, isotopic compositions, and diagenetic processes overlying continental margin, methane-rich sediments accociated with gas hydrates. Doctoral Dissertaion. North Carolina: University of North Carolina at Chapel Hill
[28]  Borowski W S, Hoehler T M, Alperin M J, et al. 2000. Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge Gas Hydrates. In: Paull C K, Matsumoto R, Wallace P J, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 164: 87-99
[29]  Canfield D E, Habicht K S, Thamdrup B. 2000. The Archean sulfur cycle and the early history of atmospheric oxygen. Science, 288: 658-660
[30]  Cavagna S, Clari P, Martire L. 1999. The role of bacteria in the formation of cold seep carbonates: Geological evidence from Monferrato (Tertiary, NW Italy). Sediment Geol, 126: 253-270
[31]  Chen D F, Feng D, Su Z, et al. 2006. Pyrite crystallization in seep carbonates at gas vent and hydrate site. Mater Sci Eng C, 26: 602-605
[32]  Hesse R, Harrison W E. 1981. Gas hydrates (clathrates) casuing pore-water freshening and oxygen-isotope fractionation in deep-water sedimentary sections of terrigenous continental margins. Earth Planet Sci Lett, 55: 453-462
[33]  Holland H D. 2002. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim Cosmochim Acta, 66: 3811-3826
[34]  J?rgensen B B, B?ttcher M E, Luschen H, et al. 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim Cosmochim Acta, 68: 2095-2118
[35]  Kohn M J, Riciputi L R, Stakes D, et al. 1998. Sulfur isotope variability in biogenic pyrite: Reflections of heterogeneous bacterial colonization? Am Mineral, 83: 1454-1468
[36]  Sassen R, Roberts H H, Carney R, et al. 2004. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gult of Mexico continental slope: Relation to microbial processes. Chem Geol, 205: 195-217
[37]  Schoonen M A A. 2004. Mechanisms of sedimentary pyrite formation. Geol Soc Am Bull, 379: 117-134
[38]  Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Carlton: Blackwell Scienti?c Publication. 312
[39]  Ussler III W, Paull C K. 1995. Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition. Geo-Mar Lett, 15: 37-44
[40]  Wang J S, Chen Q, Wei Q, et al. 2008. Authigenic pyrites and their stable sulfur isotopes in sediments from IODP 311 on Cascadia margin, northeastern pacific. In: Abstracts of 6th International Conference on Gas Hydrates, Vancouver
[41]  Wilkin R T, Barnes H L, Brantley S L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim Cosmochim Acta, 60: 3897-3912

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133