Wilkin R T, Arthur M A. 2001. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition. Geochim Cosmochim Acta, 65: 1399-1416
[6]
Zopfi J, B?ttcher M E, J?rgensen B B. 2000. Early diagenesis and isotope biogeochemistry of sulfur in Thioploca-dominated sediments off Chile. Doctoral Dissertation. Bremen: Bremen University. 85-109
Aharon P, Fu B. 2003. Sulfur and oxygen isotopes of coeval sulfate-sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chem Geol, 195: 201-218
[24]
Berner R A. 1985. Sulphate reduction, organic matter decomposition and pyrite formation. Philos Trans R Soc A-Math Phys Eng Sci, 315: 25-38
[25]
Berner R A. 2001. Modeling atmospheric O2 over Phanerozoic time. Geochim Cosmochim Acta, 65: 685-694
[26]
Boning P, Brumsack H J, B?ttcher M E, et al. 2004. Geochemistry of Peruvian near-surface sediments. Geochim Cosmochim Acta, 68: 4429-4451
[27]
Borowski W S. 1998. Pore-water sulfate concentration gradients, isotopic compositions, and diagenetic processes overlying continental margin, methane-rich sediments accociated with gas hydrates. Doctoral Dissertaion. North Carolina: University of North Carolina at Chapel Hill
[28]
Borowski W S, Hoehler T M, Alperin M J, et al. 2000. Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge Gas Hydrates. In: Paull C K, Matsumoto R, Wallace P J, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 164: 87-99
[29]
Canfield D E, Habicht K S, Thamdrup B. 2000. The Archean sulfur cycle and the early history of atmospheric oxygen. Science, 288: 658-660
[30]
Cavagna S, Clari P, Martire L. 1999. The role of bacteria in the formation of cold seep carbonates: Geological evidence from Monferrato (Tertiary, NW Italy). Sediment Geol, 126: 253-270
[31]
Chen D F, Feng D, Su Z, et al. 2006. Pyrite crystallization in seep carbonates at gas vent and hydrate site. Mater Sci Eng C, 26: 602-605
[32]
Hesse R, Harrison W E. 1981. Gas hydrates (clathrates) casuing pore-water freshening and oxygen-isotope fractionation in deep-water sedimentary sections of terrigenous continental margins. Earth Planet Sci Lett, 55: 453-462
[33]
Holland H D. 2002. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim Cosmochim Acta, 66: 3811-3826
[34]
J?rgensen B B, B?ttcher M E, Luschen H, et al. 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim Cosmochim Acta, 68: 2095-2118
[35]
Kohn M J, Riciputi L R, Stakes D, et al. 1998. Sulfur isotope variability in biogenic pyrite: Reflections of heterogeneous bacterial colonization? Am Mineral, 83: 1454-1468
[36]
Sassen R, Roberts H H, Carney R, et al. 2004. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gult of Mexico continental slope: Relation to microbial processes. Chem Geol, 205: 195-217
[37]
Schoonen M A A. 2004. Mechanisms of sedimentary pyrite formation. Geol Soc Am Bull, 379: 117-134
[38]
Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Carlton: Blackwell Scienti?c Publication. 312
[39]
Ussler III W, Paull C K. 1995. Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition. Geo-Mar Lett, 15: 37-44
[40]
Wang J S, Chen Q, Wei Q, et al. 2008. Authigenic pyrites and their stable sulfur isotopes in sediments from IODP 311 on Cascadia margin, northeastern pacific. In: Abstracts of 6th International Conference on Gas Hydrates, Vancouver
[41]
Wilkin R T, Barnes H L, Brantley S L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim Cosmochim Acta, 60: 3897-3912