全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南盘江地区二叠纪-三叠纪之交浅水台地古氧相研究

, PP. 1273-1282

Keywords: 古氧相,生物灭绝,二叠纪-三叠纪,火山事件,浅水台地,微生物岩

Full-Text   Cite this paper   Add to My Lib

Abstract:

?海洋缺氧被认为是导致二叠纪末生物大灭绝的重要原因之一,但是缺氧时限和缺氧程度在不同地区的差异仍未得到很好的解决.为深入探索二叠纪-三叠纪之交浅水相区海洋缺氧的演变过程和形成机理,对位于“大贵州滩”台地内部打讲剖面的二叠系-三叠系界线地层中的生物组成和关键地球化学指标进行了系统研究.大灭绝前的浅水碳酸盐岩台地表现出低硫(总硫,黄铁矿硫),低黄铁矿硫/有机碳比值(硫黄铁矿/C有机),低黄铁矿化系数(DOP)的特征,同时记录了碳同位素的负偏和硫化氢气体释放事件,表明该时期以氧化环境为主;大灭绝后的各种地球化学指标显示浅水台地开始向贫氧-缺氧环境转变,但缺氧程度不高,主要为贫氧-缺氧相.以此为基础,本文提出该时期南盘江盆地古氧相的基本演变模式,即大灭绝前频繁的火山活动释放大量CO2,SO2等气体,使得气温出现上升,导致陆地生态系统开始瓦解,陆地风化速率加快,陆源输入的增加引发碳同位素负偏;与此同时,陆源物质输入的增加还导致海洋贫氧层(OMZ)扩张.当OMZ间歇性入侵透光带时,导致H2S气体向浅水台地释放,从而引发黄铁矿埋藏脉冲式上升的现象.大灭绝后,气温急剧上升,陆地风化速率加剧,OMZ急剧扩张,“大贵州滩”浅水台地开始向贫氧-缺氧环境转变.由此可见,二叠纪末的生物大灭绝是由火山活动增强,升温事件和海洋缺氧等一系列环境因素引发的.结合最新的研究结果,笔者认为该时期的升温事件是引发生物大灭绝的主导因素,同时也是导致海洋缺氧加剧的主要原因.此外,本文新的地球化学数据进一步证实了该地区的微生物岩形成于贫氧-缺氧环境.

References

[1]  刘建波, 江崎洋一, 杨守仁, 等. 2007. 贵州罗甸二叠纪末生物大灭绝事件后沉积的微生物岩的时代和沉积学特征. 古地理学报, 9: 473-486
[2]  宋海军, 童金南, 熊炎林, 等. 2012. δ13Ccarb-深度梯度的剧增与二叠纪末生物大灭绝. 中国科学: 地球科学, 42: 1182-1191
[3]  王钦贤, 童金南, 宋海军, 等. 2009. 湖南慈利康家坪剖面二叠纪-三叠纪之交的生态系演变. 中国科学D辑: 地球科学, 39: 1239-1247
[4]  王永标, 童金南, 王家生, 等. 2005. 华南二叠纪末大灭绝后的钙质微生物岩及古环境意义. 科学通报, 50: 552-558
[5]  吴亚生, 姜红霞, Yang W, 等. 2007. 二叠纪-三叠纪之交缺氧环境的微生物和微生物岩. 中国科学D辑: 地球科学, 37: 618-628
[6]  肖加飞, 李荣西, 王兴理, 等. 2009. 大贵州滩二叠系-三叠系界线附近锶同位素组成特征. 地质论评, 55: 647-652
[7]  余素玉. 1989. 化石碳酸盐岩微相. 北京: 地质出版社
[8]  Algeo T J, Hinnov L, Moser J, et al. 2010a. Changes in productivity and redox conditions in the panthalassic ocean during the latest Permian. Geology, 38: 187-190
[9]  Shen W J, Lin Y T, Xu L, et al. 2007. Pyrite framboids in the Permian-Triassic boundary section at Meishan, China: Evidence for dysoxic deposition. Paleogeogr Paleoclimatol Paleoecol, 253: 323-331
[10]  Song H J, Tong J N, Chen Z Q, et al. 2009. End-Permian mass extinction of foraminifers in the Nanpanjiang basin, South China. J Paleont, 83: 718-738
[11]  Song H J, Wignall P B, Chen Z Q, et al. 2011. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology, 39: 739-742
[12]  Song H J, Wignall P B, Tong J N, et al. 2012. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery. Earth Planet Sci Lett, 353: 12-21
[13]  Song H J, Wignall P B, Tong J N, et al. 2013a. Two pulses of extinction during the Permian-Triassic crisis. Nat Geosci, 6: 52-56
[14]  Song H Y, Tong J N, Algeo T J, et al. 2013b. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism. Glob Planet Change, 105: 7-20
[15]  Tong J N, Zuo J X, Chen Z Q. 2007. Early Triassic carbon isotope excursions from South China: Proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction. Geol J, 42: 371-389
[16]  Wingall P B, Twitchett R J. 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272: 1155-1158
[17]  Wingall P B, Twitchett R J. 2002. Extent, duration, and nature of the Permian-Triassic superanoxic event. In: Koeberl C, MacLeod K G, eds. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geol Soc Am Spec Publ, 356: 395-413
[18]  Wignall P B. 2005. The link between large igneous province eruptions and mass extinction. Elements, 1: 293-297
[19]  Wignall P B, Newton R, Brookfield M E. 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Paleogeogr Paleoclimatol Paleoecol, 216: 183-188
[20]  Xie S C, Pancost R D, Yin H F, et al. 2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 434: 494-497
[21]  Yin H F, Feng Q L, Lai X L, et al. 2007. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. Glob Planet Change, 55: 1-20
[22]  Algeo T J, Twitchett R J. 2010b. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology, 38: 1023-1026
[23]  Algeo T J, Kuwahara K, Sano H, et al. 2011. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic ocean. Paleogeogr Paleoclimatol Paleoecol, 308: 65-83
[24]  Becker L, Poreda R J, Hunt A G, et al. 2001. Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science, 291: 1530-1533
[25]  Berner R A. 1984. Sedimentary pyrite formation: An update. Geochim Cosmochim Acta, 48: 605-615
[26]  Bond D P G, Wignall P B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. Geol Soc Am Bull, 122: 1265-1279
[27]  Brennecka G A, Herrmann A D, Algeo T J, et al. 2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc Nat Acad Sci USA, 108: 17631-17634
[28]  Canfield D E, Raiswell R, Westrich J T, et al. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem Geol, 54: 149-155
[29]  Chen J, Beatty T W, Henderson C M et al. 2009. Conodont biostratigraphy across the Permian-Triassic boundary at the Dawen section, Great Bank of Guizhou, Guizhou Province, South China: Implications for the Late Permian extinction and correlation with Meishan. J Asian Earth Sci, 36: 442-458
[30]  Erwin D H. 2006. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton: Princeton University Press. 1-306
[31]  Flügel E. 2004. Microfacie of Carbonate Rocks: Analysis, Interpretation and Application. Berlin-Heidelberg: Springer-Verlag. 1-976
[32]  Forel M B, Crasquin S, Kershaw S, et al. 2009. Ostracods (Crustacea) and water oxygenation in the earliest Triassic of South China: Implications for oceanic events at the end-Permian mass extinction. Aust J Earth Sci, 56: 815-823
[33]  Gorjan P, Kaiho K, Kakegawa T, et al. 2007. Paleoredox, biotic and sulfur-isotopic changes associated with the end-Permian mass extinction in the western Tethys. Chem Geol, 244: 483-492
[34]  Grice K, Cao C Q, Love G D, et al. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307: 706-709
[35]  Isozaki Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea. Science, 276: 235-238
[36]  Jin Y G, Wang Y, Wang W, et al. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289: 432-436
[37]  Joachimski M M, Lai X L, Shen S Z, et al. 2012. Climate warming in the latest Permian and Permian-Triasisc mass extinction. Geology, 40: 195-198
[38]  Kaiho K, Kajiwara Y, Nakano T, et al. 2001. End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, 29: 815-818
[39]  Kakuwa Y, Matsumoto R. 2006. Cerium negative anomaly just before the Permian and Triassic boundary event-The upward expansion of anoxia in the water column. Paleogeogr Paleoclimatol Paleoecol, 229: 335-344
[40]  Kamo S L, Czamanske G K, Amelin Y, et al. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett, 214: 75-91
[41]  Kershaw S, Zhang T S, Lan G Z. 1999. A microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental significance. Paleogeogr Paleoclimatol Paleoecol, 146: 1-18
[42]  Kershaw S, Guo L, Swift A, et al. 2002. Microbialites in the Permian-Triassic boundary interval in central China: Structure, age and distribution. Facies, 47: 83-90
[43]  Kershaw S, Li Y, Soleau S C, et al. 2007. Earliest Triassic microbialites in the South China block and other areas: Controls on their growth and distribution. Facies, 53: 409-425
[44]  Knoll A H, Bambach R K, Payne J L, et al. 2007. Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett, 256: 295-313
[45]  Kump L R, Pavlov A, Arthur M A. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, 33: 397-400
[46]  Lehrmann D J, Wei J Y, Enos P. 1998. Controls on facies architecture of a large Triassic carbonate platform: The Great Bank of Guizhou, Nanpanjiang Basin, South China. J Sediment Res, 68: 311-326
[47]  Lehrmann D J. 1999. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China. Geology, 27: 359-362
[48]  Liao W, Wang Y B, Kershaw S, et al. 2010. Shallow-marine dysoxia across the Permian-Triassic boundary: Evidence from pyrite framboids in the microbialite in South China. Sediment Geol, 232: 77-83
[49]  Nielsen J K, Shen Y A. 2004. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin. Geology, 32: 1037-1040
[50]  Payne J L, Lehrmann D J, Wei J Y, et al. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305: 506-509
[51]  Payne J L, Turchyn A V, Paytan A, et al. 2010. Calcium isotope constraints on the end-Permian mass extinction. Proc Nat Acad Sci USA, 107: 8543-8548
[52]  Raiswell R, Buckley F. 1988. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J Sediment Petrol, 58: 812-819
[53]  Raiswell R, Canfield D E, Berner R A. 1994. A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chem Geol, 111:101-110
[54]  Riccardi A L, Arthur M A, Kump L R. 2006. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochim Cosmochim Acta, 70: 5740-5752
[55]  Shen S Z, Crowley J L, Wang Y, et al. 2012. Calibrating the End-Permian mass extinction. Science, 334: 1367-1372

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133