Algeo T J, Hinnov L, Moser J, et al. 2010a. Changes in productivity and redox conditions in the panthalassic ocean during the latest Permian. Geology, 38: 187-190
[9]
Shen W J, Lin Y T, Xu L, et al. 2007. Pyrite framboids in the Permian-Triassic boundary section at Meishan, China: Evidence for dysoxic deposition. Paleogeogr Paleoclimatol Paleoecol, 253: 323-331
[10]
Song H J, Tong J N, Chen Z Q, et al. 2009. End-Permian mass extinction of foraminifers in the Nanpanjiang basin, South China. J Paleont, 83: 718-738
[11]
Song H J, Wignall P B, Chen Z Q, et al. 2011. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology, 39: 739-742
[12]
Song H J, Wignall P B, Tong J N, et al. 2012. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery. Earth Planet Sci Lett, 353: 12-21
[13]
Song H J, Wignall P B, Tong J N, et al. 2013a. Two pulses of extinction during the Permian-Triassic crisis. Nat Geosci, 6: 52-56
[14]
Song H Y, Tong J N, Algeo T J, et al. 2013b. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism. Glob Planet Change, 105: 7-20
[15]
Tong J N, Zuo J X, Chen Z Q. 2007. Early Triassic carbon isotope excursions from South China: Proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction. Geol J, 42: 371-389
[16]
Wingall P B, Twitchett R J. 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272: 1155-1158
[17]
Wingall P B, Twitchett R J. 2002. Extent, duration, and nature of the Permian-Triassic superanoxic event. In: Koeberl C, MacLeod K G, eds. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geol Soc Am Spec Publ, 356: 395-413
[18]
Wignall P B. 2005. The link between large igneous province eruptions and mass extinction. Elements, 1: 293-297
[19]
Wignall P B, Newton R, Brookfield M E. 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Paleogeogr Paleoclimatol Paleoecol, 216: 183-188
[20]
Xie S C, Pancost R D, Yin H F, et al. 2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 434: 494-497
[21]
Yin H F, Feng Q L, Lai X L, et al. 2007. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. Glob Planet Change, 55: 1-20
[22]
Algeo T J, Twitchett R J. 2010b. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology, 38: 1023-1026
[23]
Algeo T J, Kuwahara K, Sano H, et al. 2011. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic ocean. Paleogeogr Paleoclimatol Paleoecol, 308: 65-83
[24]
Becker L, Poreda R J, Hunt A G, et al. 2001. Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science, 291: 1530-1533
[25]
Berner R A. 1984. Sedimentary pyrite formation: An update. Geochim Cosmochim Acta, 48: 605-615
[26]
Bond D P G, Wignall P B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. Geol Soc Am Bull, 122: 1265-1279
[27]
Brennecka G A, Herrmann A D, Algeo T J, et al. 2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc Nat Acad Sci USA, 108: 17631-17634
[28]
Canfield D E, Raiswell R, Westrich J T, et al. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem Geol, 54: 149-155
[29]
Chen J, Beatty T W, Henderson C M et al. 2009. Conodont biostratigraphy across the Permian-Triassic boundary at the Dawen section, Great Bank of Guizhou, Guizhou Province, South China: Implications for the Late Permian extinction and correlation with Meishan. J Asian Earth Sci, 36: 442-458
[30]
Erwin D H. 2006. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton: Princeton University Press. 1-306
[31]
Flügel E. 2004. Microfacie of Carbonate Rocks: Analysis, Interpretation and Application. Berlin-Heidelberg: Springer-Verlag. 1-976
[32]
Forel M B, Crasquin S, Kershaw S, et al. 2009. Ostracods (Crustacea) and water oxygenation in the earliest Triassic of South China: Implications for oceanic events at the end-Permian mass extinction. Aust J Earth Sci, 56: 815-823
[33]
Gorjan P, Kaiho K, Kakegawa T, et al. 2007. Paleoredox, biotic and sulfur-isotopic changes associated with the end-Permian mass extinction in the western Tethys. Chem Geol, 244: 483-492
[34]
Grice K, Cao C Q, Love G D, et al. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307: 706-709
[35]
Isozaki Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea. Science, 276: 235-238
[36]
Jin Y G, Wang Y, Wang W, et al. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289: 432-436
[37]
Joachimski M M, Lai X L, Shen S Z, et al. 2012. Climate warming in the latest Permian and Permian-Triasisc mass extinction. Geology, 40: 195-198
[38]
Kaiho K, Kajiwara Y, Nakano T, et al. 2001. End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, 29: 815-818
[39]
Kakuwa Y, Matsumoto R. 2006. Cerium negative anomaly just before the Permian and Triassic boundary event-The upward expansion of anoxia in the water column. Paleogeogr Paleoclimatol Paleoecol, 229: 335-344
[40]
Kamo S L, Czamanske G K, Amelin Y, et al. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett, 214: 75-91
[41]
Kershaw S, Zhang T S, Lan G Z. 1999. A microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental significance. Paleogeogr Paleoclimatol Paleoecol, 146: 1-18
[42]
Kershaw S, Guo L, Swift A, et al. 2002. Microbialites in the Permian-Triassic boundary interval in central China: Structure, age and distribution. Facies, 47: 83-90
[43]
Kershaw S, Li Y, Soleau S C, et al. 2007. Earliest Triassic microbialites in the South China block and other areas: Controls on their growth and distribution. Facies, 53: 409-425
[44]
Knoll A H, Bambach R K, Payne J L, et al. 2007. Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett, 256: 295-313
[45]
Kump L R, Pavlov A, Arthur M A. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, 33: 397-400
[46]
Lehrmann D J, Wei J Y, Enos P. 1998. Controls on facies architecture of a large Triassic carbonate platform: The Great Bank of Guizhou, Nanpanjiang Basin, South China. J Sediment Res, 68: 311-326
[47]
Lehrmann D J. 1999. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China. Geology, 27: 359-362
[48]
Liao W, Wang Y B, Kershaw S, et al. 2010. Shallow-marine dysoxia across the Permian-Triassic boundary: Evidence from pyrite framboids in the microbialite in South China. Sediment Geol, 232: 77-83
[49]
Nielsen J K, Shen Y A. 2004. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin. Geology, 32: 1037-1040
[50]
Payne J L, Lehrmann D J, Wei J Y, et al. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305: 506-509
[51]
Payne J L, Turchyn A V, Paytan A, et al. 2010. Calcium isotope constraints on the end-Permian mass extinction. Proc Nat Acad Sci USA, 107: 8543-8548
[52]
Raiswell R, Buckley F. 1988. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. J Sediment Petrol, 58: 812-819
[53]
Raiswell R, Canfield D E, Berner R A. 1994. A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chem Geol, 111:101-110
[54]
Riccardi A L, Arthur M A, Kump L R. 2006. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochim Cosmochim Acta, 70: 5740-5752
[55]
Shen S Z, Crowley J L, Wang Y, et al. 2012. Calibrating the End-Permian mass extinction. Science, 334: 1367-1372