Banakar V K, Parthiban G, Pattan J N, et al. 1997. Chemistry of surface sediment along a north-south transect across the equator in the Central Indian Basin: An assessment of biogenic and detrital influences on elemental burial on the seafloor. Chem Geol, 147: 217-232
[24]
Banerjee A, Jha M, Mittal A K, et al. 2000. The effective source rocks in the north Cambay basin, India. Mar Pet Geol, 17: 1111-1129
[25]
Bond D P G, Wignall P B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. Geol Soc Am Bull, 122: 1265-1279
[26]
Bonython C W, Mason B. 1953. The filling and drying of lake Eyre.Geogr J, 119: 321-330
[27]
Bradley W H. 1929. The varves and climate of the Green River epoch. US Geol Surv Prof Pap, 158: 87-110
[28]
Dymond J, Suess E, Lyle M, et al. 1992. Barium in the deep sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7: 163-181
[29]
Francois R, Honjo S, Manganini S J, et al. 1995. Biogenic barium fluxes to the deep sea: Implications for paleoproductivity reconstruction. Glob Biogeochem Cycle, 9: 289-303
[30]
Halbouty M T, Meyerhoff A A, King R E, et al. 1970. World''s giant oil and gas fields, geologic factors affecting their formation, and basin classification. In: Halbouty M T, eds. Geology of giant petroleum fields. AAPG Mem,14: 502-555
[31]
Hartnett H E, Kell R G, Heedges J I, et al. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature, 391: 572-574
[32]
Hay B J, Honjo S. 1990. Interannual variability in partical flux in the southwestern Black Sea. Oceanography, 11: 18-22
[33]
Hedges J I, Hu F S, Devol A H, et al. 1999. Sedimentary organic matter preservation: A test for selective degradation under oxic conditions. Am J Sci, 299: 529-555
[34]
Jones B F, Eugster H P, Rettig S L. 1977. Hydrochemistry of the lake Magadi basin, Kenya. Geochim Cosmochim Acta, 41: 53-72
[35]
Kelts K. 1988. Environment of deposition of lacustrine petroleum source rocks: An introduction. In: Fleet A J, Kelts K, Talbot M R, eds. Lacustrine Petroleum Source Rocks. Geol Soc Spec Publ, 40: 3-29
[36]
Leythaeuser D, Schaefer R G, Radke M. 1988. Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae Field area, North Sea, I: Gross composition of C15+-soluble organic matter and molecular C15+-saturated hydrocarbons. Geochim Cosmochim Acta, 52: 701-713
[37]
Liu Z L, Liu X X. 2000. Great significance of developiog artificial alagal mats. J Nanjing Univ (Nat Sci), 36: 224-228
[38]
Müller P J, Suess E. 1979. Productivity, sedimentation rate and sedimentary organic matter in the ocean. I. Organic carbon preservation. Deep-Sea Res Part I—Oceanogr Res Pap, 26: 1347-1362
[39]
Murray G, James W H, Adolf S, et al. 2011. Possible evolution of mobile animals in association with microbial mats. Nat Geosci, 4: 372-375
[40]
Murray R W, Leinen M, Isern A R. 1993. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: Evidence for increased productivity during glacial periods. Paleoceanography, 8: 661-669
[41]
Pan C H. 1941. Non-marine origin of the petroleum in North Shansi and Cretaceous of Sichuan, China. AAPG Bull, 25: 2058-2068
[42]
Pattan J N, Shane P. 1999. Excess aluminum in deep sea sediments of the Central Indian Basin. Mar Geol, 161: 247-255
[43]
Sebastian S, Edith D K, Roland Z, et al. 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr, 54: 2243-2254
[44]
Thunell R C, Ramon V, Martin L, et al. 2000. Organic carbon fluxes, degradation, and accumulation in an anoxic basin: Sediment trap results from the Cariaco Basin. Limnol Oceanogr, 45: 300-308
Zhu G Y, Jin Q, Zhang S C, et al. 2004. Distribution characteristics of effective source rocks and their controls on hydrocarbon accumulation: A case study from the Dongying Sag, Eastern China. Acta Geol Sin, 78: 1275-1288