全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

寒武纪大爆发的因果关系

, PP. 1155-1170

Keywords: 寒武纪大爆发,基因调控网络,冈瓦纳大陆,环境激发因素生态雪球效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

?寒武纪大爆发是长期受多学科领域关注的基础前沿课题.本文从动物门类的化石首次出现、分异演化时间、环境变化、发育基因调控网路以及生态效应等几个方面来讨论它们与寒武纪大爆发的因果关系.动物门类的化石首次出现时间主要集中在寒武纪的前三个阶(541~514Ma),体现出突发性、阶段性和不等时性.动物门类分异演化的时间,目前还存在深时分异和浅时分异的争议.控制动物发育的基因调控网络早在动物分异演化之前就已经形成,表明基因调控网络的建立是寒武纪大爆发的前提条件,但不是充分条件.因此,寒武纪大爆发需要环境激发因素.海水氧化还原条件和化学成分的变化以及营养物质的补给是最受关注的环境诱发因素.海洋生态环境内营养物质的富集通常会导致原始生产力的过剩,并不一定直接对应于动物多样性增长.埃迪卡拉纪至寒武纪过渡时期海水的持续氧化、钙和其他离子浓度的变化以及总盐度的降低可能是触发寒武纪大爆发的主要环境因素,但需要更精确的年代地层学、地球化学和动物发育生理学等数据加以验证.很多学者认为寒武纪大爆发是一种生态现象,即后生动物于寒武纪早期在生态上获得空前的成功.生态效应需要大量不同类型的动物来实现.因此,动物与动物之间以及动物与环境之间,复杂生态关系的建立也是寒武纪大爆发的结果而不是原因.不可否认,生态效应的积极反馈作用可以促进生物多样性增长.寒武纪大爆发是由环境变化突破关键约束而导致的以后生动物为主导的海洋生态系统的初次建立,通过“生态雪球”效应连锁反应得以实现.

References

[1]  舒德干, 张兴亮, 韩健, 等. 2009. 再论寒武纪大爆发和动物树成型. 古生物学报, 48: 414-427
[2]  Adamska M, Degnan B M, Green K, et al. 2011. What sponges can tell us about the evolution of developmental processes. Zoology, 114: 1-10
[3]  Amthor J E, Grotzinger J P, Schroeder S, et al. 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31: 431-434
[4]  Aris-Brosou S, Yang Z. 2003. Bayesian models of episodic evolution support a late Precambrian explosive diversification of the Metazoa. Mol Biol Evol, 20: 1947-1954
[5]  Bagu?à J, Riutort M. 2004. The dawn of bilaterian animals: The case of acoelomorph flatworms. Bioessays, 26: 1046-1057
[6]  Balavoine G, de Rosa R, Adoutte A. 2002. Hox clusters and bilaterian phylogeny. Mol Phylogenet Evol, 24: 137-147
[7]  Bengtson S. 2002. Origins and early evolution of predation. Paleont Soc Pap, 8: 289-317
[8]  Berner R A. 2004. A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. Am J Sci, 304: 438-453
[9]  Blair J E. 2009. Animals(Metazoa). In: Hedges S B, Kumar S, Eds. The Timetree of Life. Oxford: Oxford University Press. 223-230
[10]  Bottjer D J, Hagadorn J W, Dornbos S Q. 2000. The Cambrian substrate revolution. GSA Today, 10: 1-7
[11]  Brasier M D, Lindsay J F. 2001. Did supercontinental amalgamation trigger the “Cambrian explosion”? In: Zhuralev A Y, Riding R, eds. The Ecology of the Cambrian Radiation. New York: Columbia University Press. 69-89
[12]  Brennan S T, Lowenstein T K, Horita J. 2004. Seawater chemistry and the advent of biocalcification. Geology, 32: 473-476
[13]  Butterfield N J. 1997. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology, 23: 247-262
[14]  Butterfield N J. 2001. Cambrian food webs. In: Briggs D E G, Crowther P R, eds. Palaeobiology II. Oxford: Blackwell Science. 40-43
[15]  Butterfield N J. 2009. Oxygen, animals and oceanic ventilation: An alternative view. Geobiology, 7: 1-7
[16]  Campbell I H, Allen C M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nat Geosci, 1: 554-558
[17]  Campbell I H, Squire R J. 2010. The mountains that triggered the Late Neoproterozoic increase in oxygen: The second great oxide-tion event. Geochim Cosmochim Acta, 74: 4187-4206
[18]  Canfield D E. 2005. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu Rev Earth Planet Sci, 33: 1-36
[19]  Canfield D E, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci USA, 106: 8123-8127
[20]  Canfield D E, Poulton S W, Knoll A H. et al. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321: 949-952
[21]  Canfield D E, Poulton S W, Narbonne G M. 2007. Late-Neopro-terozoic deep-ocean oxygenation and the rise of animal life. Science, 315: 92-95
[22]  Carroll S B. 2005. Endless Forms Most Beautiful: the New Science of Evo Devo and the Making of the Animal Kingdom. New York: W. W. Norton. 1-350
[23]  Carroll S B, Grenier J K, Weather S D. 2001. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Oxford: Blackwell Science. 1-214
[24]  Catling D C, Glein C R, Zahnle K J, et al. 2005. Why O2 is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology, 5: 415-438
[25]  Chen J Y, Schopf J W, Bottjer D J, et al. 2007. Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China. Proc Natl Acad Sci USA, 104: 6289-6293
[26]  Cloud P E Jr. 1948. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution, 2: 322-350
[27]  Conway Morris, S. 2000. The Cambrian ‘‘explosion'''': Slow-fuse or megatonnage? Proc Natl Acad Sci USA, 97: 4426-4429
[28]  Conway Morris S, Peel J S. 2008. The earliest annelids: Lower Cambrian polychaetes from the Sirius Passet Lagerst?tte, Peary Land, North Greenland. Acta Palaeontol Pol, 53: 137-148
[29]  Danovaro R, Dell''Anno A, Pusceddu A, et al. 2010. The first metazoan living in permanently anoxic conditions. BMC Biology, 8: 30
[30]  Davidson E H. 2010. Emerging properties of animal gene regulatory networks. Nature, 468: 911-920
[31]  Davidson E H, Erwin D H. 2009. An integrated view of Precambrian eumetazoan evolution. Cold Spring Harb Sym, 74: 65-80
[32]  Davidson E H, Erwin D H. 2006. Gene regulatory networks and the evolution of animal body plans. Science, 311: 796-800
[33]  Decker H, van Holde K E. 2011. Oxygen and the Evolution of Life. Heidelberg: Springer. 1-172
[34]  de Rosa R, Grenier J K, Andreeva T, et al. 1999. Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399: 772-776
[35]  Dong X P, Bengtson S, Gostling N J, et al. 2010. The anatomy, taphonomy, taxonomy and systematic affinity of Markuelia: Early Cambrian to Early Ordovician scalidophorans. Palaeontology, 53: 1291-1314
[36]  Erwin D H. 2007. Disparity: Morphological pattern and developmental context. Palaeontology, 50: 57-73
[37]  Erwin D H. 2009. Early origin of the bilaterian developmental toolkit. Philos Trans R Soc B-Biol Sci, 364: 2253-2261
[38]  Erwin D H, Davidson E H. 2002. The last common bilaterian ancestor. Development, 129: 3021-3032
[39]  Erwin, D H, Laflamme M, Tweedt S M, et al. 2011. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334: 1901-1907
[40]  Erwin D H, Tweedt S. 2012. Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evol Ecol, 26: 417-433
[41]  Evans J S. 1912. The sudden appearance of the Cambrian fauna. In: 11th International Geological Congress, Stockholm. 1: 543-546
[42]  Fedonkin M A. 2003. The origin of the Metazoa in the light of Proterozoic fossil record. Paleont Res, 7: 9-41
[43]  Fedonkin M A, Gehling J, Grey K, et al. 2007. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Baltimore: The Johns Hopkins University Press. 1-326
[44]  Fedonkin M A, Waggoner B M. 1997. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388: 868-871
[45]  Grimaldi D A, Engel M S, Nascibene P C. 2002. Fossiliferous Cretaceous amber from Myanmar(Burma): Its rediscovery, biotic diversity, and paleontological significance. Amer Mus Nat Hist, 3361: 1-71
[46]  Han J, Kubota S, Uchida H, et al. 2010. Tiny sea anemone from the Lower Cambrian of China. Plos One, 5: e13276. doi:10.1371/journal.pone. 0013276.
[47]  Harcet M., Roller M, Cetkovic H, et al. 2010. Demosponge EST sequencing reveals a complex genetic toolkit of the simplest metazoan. Mol Biol Evol, 27: 2747-2756
[48]  Hay W W, Migdisov A, Balukhovsky A N, et al. 2006. Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life. Paleogeogr Paleoclimatol Paleoecol, 240: 3-46
[49]  Hoffman P F, Kaufman A J, Halverson G P, et al. 1998. A Neoproterozoic Snowball Earth. Science, 281: 1342-1346
[50]  Hou X G, Aldridge R J, Bergstrom J, et al. 2004. The Cambrian fossils of Chengjiang, China: The flowering of early animal life. Oxford: Blackwell. 1-233
[51]  Hou X G, Aldridge R J, Siveter D J, et al. 2011. An early Cambrian hemichordate zooid. Curr Biol, 21: 612-616
[52]  Howarth R W. 1988. Nutrient limitation of net primary production in marine ecosystems. Ann Rev Ecol Syst, 19: 89-110
[53]  Hua H, Chen Z, Yuan X L, et al. 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33: 277-280
[54]  Huang D Y, Chen J Y, Vannier J, et al. 2004. Early Cambrian sipunculan worms from southwest China. Proc R Soc B-Biol Sci, 271: 1671-1676
[55]  Hutchinson G E. 1961. The biologist poses some problems. In: Sears M, eds. Oceanography, American Association for the Advancement of Science, 67: 85-94
[56]  Jiang L, Schofield O M E, Falkowski P G. 2005. Adaptive evolution of phytoplankton cell size. Am Nat, 166: 496-505
[57]  Kendall B, Anbar A D, Kappler A, et al. 2012. The global iron cycle. In: Knoll A H, Canfield D C, Konhauser K O, eds. Fundamentals of Geobiology. Oxford: Wiley-Blackwell. 65-92
[58]  Knauth L P. 1998. Salinity history of the Earth''s early ocean. Nature, 395: 554-555
[59]  Levinton J S. 2001. Genetics, Paleontology, and Macroevolution. 2nd ed. Cambridge: Cambridge University Press. 1-617
[60]  Knauth L P. 2005. Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. Paleogeogr Paleoclimatol Paleoecol, 219: 53-69
[61]  Knoll A H, Carroll S B. 1999. Early animal evolution: Emerging views from comparative biology and geology. Science, 284: 2129-2137
[62]  Knoll A H, Walter M R. 1992. Latest Proterozoic stratigraphy and Earth history. Nature, 356: 673-678
[63]  Kouchinsky A, Bengtson S, Runnegar B, et al. 2012. Chronology of early Cambrian biomineralization. Geol Mag, 149: 221-251
[64]  Kump L R. 2008. The rise of atmospheric oxygen. Nature, 451: 277-278
[65]  Landing E, English A, Keppie J D. 2010. Cambrian origin of all skeletonized metazoan phyla-discovery of Earth''s oldest bryozoans (Upper Cambrian, southern Mexico). Geology, 38: 547-350
[66]  Larroux C, Fahey B, Liubicich D, et al. 2006. Developmental expression of transcription factor genes in a demosponge: Insight into the origins of metazoan multicellularity. Evol Dev, 8: 150-173
[67]  Li Z X, Powell C M. 2001. An outline of the palaeongeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Sci Rev, 53: 237-277
[68]  Liu J N, Shu D G, Han J, et al. 2008. Origin, diversification, and relationships of Cambrian lobopods. Gondwana Res, 14: 277-283
[69]  Love G D, Grosjean E, Stalvies C, et al. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457: 718-721
[70]  Marshall C R. 2003. Nomethetism and understanding the Cambrian “explosion”. Palaios, 18: 195-56
[71]  Marshall C R. 2006. Explaining the Cambrian ‘‘explosion'''' of animals. Annu Rev Earth Planet Sci, 34: 355-384
[72]  Meert J G. 2003. Proterozoic East Gondwana: Supercontinent assembly and breakup. Special Publication 206, Eos, Transactions American Geophysical Union, 84: 372
[73]  Meert J G. 2011. Gondwanaland, formation. In: Reitner J, Thiel V, eds. Encyclopedia of Geobiology. Berlin: Springer. 434-436
[74]  Meysman F J R, Middelburg J J, Heip C H R. 2006. Bioturbation: A fresh look at Darwin''s last idea. Trends Ecol Evol, 21: 688-695
[75]  Müller K J, Walossek D, Zakharov A. 1995. Orsten type phosphatized soft-integument preservation and a new record from the Middle Cambrian Kuonamka Formation in Siberia. Neues Jahrbuch Geol Pal?ont, 197: 101-118
[76]  Nielsen C. 2012. Animal evolution: Interrelationships of the living phyla (3rd edition). Oxford: Oxford University Press. 1-402
[77]  Papineau D. 2010. Global biogeochemical changes at both ends of the Proterozoic: Insights from phosphorites. Astrobiology, 10: 165-181
[78]  Peel J S. 2010. A corset-like fossil from the Cambrian Sirius Passet Lagerstatte of North Greenland and its implications for cycloneuralian evolution. J Paleontol, 84: 332-340
[79]  Peters S E, Gaines R R. 2012. Formation of the ‘Great Unconformity'' as a trigger for the Cambrian explosion. Nature, 484: 363-366
[80]  Peterson K J, Davidson E H. 2000. Regulatory evolution and the origin of the bilaterians. Proc Natl Acad Sci USA, 97: 4430-4433
[81]  Peterson K J, Dietrich M R, McPeek M A. 2009. MicroRNAs and metazoan macroevolution: Insights into canalization, complexity, and the Cambrian explosion. Bioessays, 31: 736-722
[82]  Peterson K J, Mcpeek M A, Evans D A D. 2005. Tempo and mode of early animal evolution: Inferences from rocks, Hox, and molecular clocks. In: Vrba E S, Eldredge N, eds. Macroevolution: Diversity, Disparity, Contingency. Paleobiology, 31(Supplement to 2): 36-55
[83]  Petsch S T. 2004. The global oxygen cycle. In: Schlesinger W H, eds. Biogeochemistry. Treatise on Geochemistry, 8: 515-555
[84]  Philippe H, Brinkmann H, Copley R R, et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature, 470: 255-258
[85]  Planavsky N J, Rouxel O J, Bekker A. et al. 2010. The evolution of the marine phosphate reservoir. Nature, 467: 1088-1090
[86]  Poinar G J, Buckley R. 2006. Nematode (Nematoda: Mermithidae) and hairworm(Nematomorpha: Chordolidae)parasites in the early Cretaceous amber. J Invertebr Pathol, 93: 36-41
[87]  Poinar G J, Kerp H, Hass H. 2008. Palaeonema phyticum gen. n., sp. n. (Nematoda: Palaeonematidae fam. n.), a Devonian nematode associated with early land plants. Nematology, 10: 9-14
[88]  Porter S. 2011. The rise of predators. Geology, 39: 607-608
[89]  Reitner J. 1992. Coralline spongien: Der versuch einer phylogenetisch-taxonomischen analyse. Berliner Geowissenschaftish Abhandlung Reihe E (Pal?obiologie), 1: 1-200
[90]  Reitner J, W?rheide G. 2002. A Guide to the Classification of Sponges. In: Hooper J N A, Van Soest R W M, eds. Systema Porifera. New York: Kluwer Academic/Plenum. 52-68
[91]  Rogers J J W, Santosh M. 2004. Continents and Supercontinents. Oxford: Oxford University Press. 1-289
[92]  Rowland S M, Hicks M. 2004. The early Cambrian experiment in reef-building by metazoans. In: Lipps J H, Waggoner B M, eds. Neoproterozoic-Cambrian biological revolutions. The Paleontological Society Papers, 10: 107-124
[93]  Seilacher A. 2007. Trace Fossil Analysis. Heidelberg: Springer. 1-226
[94]  Seilacher A, Pflüger F. 1994. From biomats to benthic agriculture: A biohistoric revolution. In: Krumbein W E, Paterson D M, Stal L J, eds. Biostabilization of Sediments. Oldenburg: Universit?t Oldenburg Press. 97-105
[95]  Shu D G. 2008. Cambrian explosion: Birth of animal tree. Gondwana Res, 14: 219-240
[96]  Shu D G, Conway Morris S, Han J, et al. 2001. Primitive deuterostomes from the Chengjiang Lagerst?tte(Lower Cambrian, south China). Nature, 414: 419-424
[97]  Shu D G, Conway Morris S, Zhang Z F, et al. 2010. The earliest history of the deuterostomes, the importance of the Chengjiang Fossil-Lagerst?tte. Proc R Soc B-Biol Sci, 277: 165-174
[98]  Valentine J W, Erwin D H, Jablonski D. 1996. Developmental evolution of metazoan body plans: The fossil evidence. Dev Biol, 173: 373-381
[99]  Valentine J W, Moores E M. 1970. Plate-tectonic regulation of faunal diversity and sea level: A model. Nature, 228: 657-659
[100]  Vermeij G J. 1990. The origin of skeletons. Palaios, 4: 585-589
[101]  Wang J G, Chen D Z, Yan D T, et al. 2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chem Geol, 306: 129-138
[102]  Xiao S H, Yuan X L, Knoll A H. 2000. Eumetazoan fossils in terminal Proterozoic phosphorites? Proc Natl Acad Sci USA, 97: 13684-13689
[103]  Xiao S H, Zhang Y, Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproteozoic phosphorite. Nature, 391: 553-558
[104]  Yin L M, Zhu M Y, Knoll A H, et al. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446: 661-663
[105]  Yuan X L, Chen Z, Xiao S H, et al. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470: 390-393
[106]  Zhang Z F, Holmer L E, Skovsted C B, et al. 2013. A sclerite-bearing stem group entoproct from the early Cambrian and its implications. Sci Rep, 3: 1066-107
[107]  Shu D G, Isozaki Y, Zhang X L, et al. 2014. The birth and evolution of metazoans. Gondwana Res, 25: 896-909
[108]  Skovsted C B, Brock G A, Topper T P, et al. 2011. Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the early Cambrian of South Australia. Palaeontology, 54: 253-286
[109]  Sperling E A, Vinther J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol Dev, 12: 201-209
[110]  Squire R J, Campbell I H, Allen C M, et al. 2006. Did the Transgondwanan supermountain trigger the explosive radiation of animals on Earth? Earth Planet Sci Lett, 250: 116-133
[111]  Stanley S M. 1973. An ecological theory for the sudden origin of multicellular life in the Late Precambrian. Proc Natl Acad Sci USA, 70: 1486-89
[112]  Stanley S M. 1976. Ideas on the timing of metazoan diversification. Paleobiology, 2: 209-219
[113]  Szaniawski H. 2002. New evidence for the protoconodont origin of chaetognaths. Acta Palaeontol Pol, 47: 405-419
[114]  Tang F, Bengtson S, Wang Y, et al. 2011. Eoandromeda and the origin of Ctenophora. Evol Dev, 13: 408-414
[115]  Thayer C W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science, 203: 458-461
[116]  Todd J A, Taylor P D. 1992. The first fossil entoproct. Naturwissenschaften, 79: 311-314
[117]  Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400: 525-531
[118]  Valentine J W. 2001. How were vendobiont bodies patterned? Paleobiology, 27: 425-428

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133