[1] | 舒德干, 张兴亮, 韩健, 等. 2009. 再论寒武纪大爆发和动物树成型. 古生物学报, 48: 414-427
|
[2] | Adamska M, Degnan B M, Green K, et al. 2011. What sponges can tell us about the evolution of developmental processes. Zoology, 114: 1-10
|
[3] | Amthor J E, Grotzinger J P, Schroeder S, et al. 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31: 431-434
|
[4] | Aris-Brosou S, Yang Z. 2003. Bayesian models of episodic evolution support a late Precambrian explosive diversification of the Metazoa. Mol Biol Evol, 20: 1947-1954
|
[5] | Bagu?à J, Riutort M. 2004. The dawn of bilaterian animals: The case of acoelomorph flatworms. Bioessays, 26: 1046-1057
|
[6] | Balavoine G, de Rosa R, Adoutte A. 2002. Hox clusters and bilaterian phylogeny. Mol Phylogenet Evol, 24: 137-147
|
[7] | Bengtson S. 2002. Origins and early evolution of predation. Paleont Soc Pap, 8: 289-317
|
[8] | Berner R A. 2004. A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. Am J Sci, 304: 438-453
|
[9] | Blair J E. 2009. Animals(Metazoa). In: Hedges S B, Kumar S, Eds. The Timetree of Life. Oxford: Oxford University Press. 223-230
|
[10] | Bottjer D J, Hagadorn J W, Dornbos S Q. 2000. The Cambrian substrate revolution. GSA Today, 10: 1-7
|
[11] | Brasier M D, Lindsay J F. 2001. Did supercontinental amalgamation trigger the “Cambrian explosion”? In: Zhuralev A Y, Riding R, eds. The Ecology of the Cambrian Radiation. New York: Columbia University Press. 69-89
|
[12] | Brennan S T, Lowenstein T K, Horita J. 2004. Seawater chemistry and the advent of biocalcification. Geology, 32: 473-476
|
[13] | Butterfield N J. 1997. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology, 23: 247-262
|
[14] | Butterfield N J. 2001. Cambrian food webs. In: Briggs D E G, Crowther P R, eds. Palaeobiology II. Oxford: Blackwell Science. 40-43
|
[15] | Butterfield N J. 2009. Oxygen, animals and oceanic ventilation: An alternative view. Geobiology, 7: 1-7
|
[16] | Campbell I H, Allen C M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nat Geosci, 1: 554-558
|
[17] | Campbell I H, Squire R J. 2010. The mountains that triggered the Late Neoproterozoic increase in oxygen: The second great oxide-tion event. Geochim Cosmochim Acta, 74: 4187-4206
|
[18] | Canfield D E. 2005. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu Rev Earth Planet Sci, 33: 1-36
|
[19] | Canfield D E, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci USA, 106: 8123-8127
|
[20] | Canfield D E, Poulton S W, Knoll A H. et al. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321: 949-952
|
[21] | Canfield D E, Poulton S W, Narbonne G M. 2007. Late-Neopro-terozoic deep-ocean oxygenation and the rise of animal life. Science, 315: 92-95
|
[22] | Carroll S B. 2005. Endless Forms Most Beautiful: the New Science of Evo Devo and the Making of the Animal Kingdom. New York: W. W. Norton. 1-350
|
[23] | Carroll S B, Grenier J K, Weather S D. 2001. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Oxford: Blackwell Science. 1-214
|
[24] | Catling D C, Glein C R, Zahnle K J, et al. 2005. Why O2 is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology, 5: 415-438
|
[25] | Chen J Y, Schopf J W, Bottjer D J, et al. 2007. Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China. Proc Natl Acad Sci USA, 104: 6289-6293
|
[26] | Cloud P E Jr. 1948. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution, 2: 322-350
|
[27] | Conway Morris, S. 2000. The Cambrian ‘‘explosion'''': Slow-fuse or megatonnage? Proc Natl Acad Sci USA, 97: 4426-4429
|
[28] | Conway Morris S, Peel J S. 2008. The earliest annelids: Lower Cambrian polychaetes from the Sirius Passet Lagerst?tte, Peary Land, North Greenland. Acta Palaeontol Pol, 53: 137-148
|
[29] | Danovaro R, Dell''Anno A, Pusceddu A, et al. 2010. The first metazoan living in permanently anoxic conditions. BMC Biology, 8: 30
|
[30] | Davidson E H. 2010. Emerging properties of animal gene regulatory networks. Nature, 468: 911-920
|
[31] | Davidson E H, Erwin D H. 2009. An integrated view of Precambrian eumetazoan evolution. Cold Spring Harb Sym, 74: 65-80
|
[32] | Davidson E H, Erwin D H. 2006. Gene regulatory networks and the evolution of animal body plans. Science, 311: 796-800
|
[33] | Decker H, van Holde K E. 2011. Oxygen and the Evolution of Life. Heidelberg: Springer. 1-172
|
[34] | de Rosa R, Grenier J K, Andreeva T, et al. 1999. Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399: 772-776
|
[35] | Dong X P, Bengtson S, Gostling N J, et al. 2010. The anatomy, taphonomy, taxonomy and systematic affinity of Markuelia: Early Cambrian to Early Ordovician scalidophorans. Palaeontology, 53: 1291-1314
|
[36] | Erwin D H. 2007. Disparity: Morphological pattern and developmental context. Palaeontology, 50: 57-73
|
[37] | Erwin D H. 2009. Early origin of the bilaterian developmental toolkit. Philos Trans R Soc B-Biol Sci, 364: 2253-2261
|
[38] | Erwin D H, Davidson E H. 2002. The last common bilaterian ancestor. Development, 129: 3021-3032
|
[39] | Erwin, D H, Laflamme M, Tweedt S M, et al. 2011. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334: 1901-1907
|
[40] | Erwin D H, Tweedt S. 2012. Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evol Ecol, 26: 417-433
|
[41] | Evans J S. 1912. The sudden appearance of the Cambrian fauna. In: 11th International Geological Congress, Stockholm. 1: 543-546
|
[42] | Fedonkin M A. 2003. The origin of the Metazoa in the light of Proterozoic fossil record. Paleont Res, 7: 9-41
|
[43] | Fedonkin M A, Gehling J, Grey K, et al. 2007. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Baltimore: The Johns Hopkins University Press. 1-326
|
[44] | Fedonkin M A, Waggoner B M. 1997. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388: 868-871
|
[45] | Grimaldi D A, Engel M S, Nascibene P C. 2002. Fossiliferous Cretaceous amber from Myanmar(Burma): Its rediscovery, biotic diversity, and paleontological significance. Amer Mus Nat Hist, 3361: 1-71
|
[46] | Han J, Kubota S, Uchida H, et al. 2010. Tiny sea anemone from the Lower Cambrian of China. Plos One, 5: e13276. doi:10.1371/journal.pone. 0013276.
|
[47] | Harcet M., Roller M, Cetkovic H, et al. 2010. Demosponge EST sequencing reveals a complex genetic toolkit of the simplest metazoan. Mol Biol Evol, 27: 2747-2756
|
[48] | Hay W W, Migdisov A, Balukhovsky A N, et al. 2006. Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life. Paleogeogr Paleoclimatol Paleoecol, 240: 3-46
|
[49] | Hoffman P F, Kaufman A J, Halverson G P, et al. 1998. A Neoproterozoic Snowball Earth. Science, 281: 1342-1346
|
[50] | Hou X G, Aldridge R J, Bergstrom J, et al. 2004. The Cambrian fossils of Chengjiang, China: The flowering of early animal life. Oxford: Blackwell. 1-233
|
[51] | Hou X G, Aldridge R J, Siveter D J, et al. 2011. An early Cambrian hemichordate zooid. Curr Biol, 21: 612-616
|
[52] | Howarth R W. 1988. Nutrient limitation of net primary production in marine ecosystems. Ann Rev Ecol Syst, 19: 89-110
|
[53] | Hua H, Chen Z, Yuan X L, et al. 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33: 277-280
|
[54] | Huang D Y, Chen J Y, Vannier J, et al. 2004. Early Cambrian sipunculan worms from southwest China. Proc R Soc B-Biol Sci, 271: 1671-1676
|
[55] | Hutchinson G E. 1961. The biologist poses some problems. In: Sears M, eds. Oceanography, American Association for the Advancement of Science, 67: 85-94
|
[56] | Jiang L, Schofield O M E, Falkowski P G. 2005. Adaptive evolution of phytoplankton cell size. Am Nat, 166: 496-505
|
[57] | Kendall B, Anbar A D, Kappler A, et al. 2012. The global iron cycle. In: Knoll A H, Canfield D C, Konhauser K O, eds. Fundamentals of Geobiology. Oxford: Wiley-Blackwell. 65-92
|
[58] | Knauth L P. 1998. Salinity history of the Earth''s early ocean. Nature, 395: 554-555
|
[59] | Levinton J S. 2001. Genetics, Paleontology, and Macroevolution. 2nd ed. Cambridge: Cambridge University Press. 1-617
|
[60] | Knauth L P. 2005. Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. Paleogeogr Paleoclimatol Paleoecol, 219: 53-69
|
[61] | Knoll A H, Carroll S B. 1999. Early animal evolution: Emerging views from comparative biology and geology. Science, 284: 2129-2137
|
[62] | Knoll A H, Walter M R. 1992. Latest Proterozoic stratigraphy and Earth history. Nature, 356: 673-678
|
[63] | Kouchinsky A, Bengtson S, Runnegar B, et al. 2012. Chronology of early Cambrian biomineralization. Geol Mag, 149: 221-251
|
[64] | Kump L R. 2008. The rise of atmospheric oxygen. Nature, 451: 277-278
|
[65] | Landing E, English A, Keppie J D. 2010. Cambrian origin of all skeletonized metazoan phyla-discovery of Earth''s oldest bryozoans (Upper Cambrian, southern Mexico). Geology, 38: 547-350
|
[66] | Larroux C, Fahey B, Liubicich D, et al. 2006. Developmental expression of transcription factor genes in a demosponge: Insight into the origins of metazoan multicellularity. Evol Dev, 8: 150-173
|
[67] | Li Z X, Powell C M. 2001. An outline of the palaeongeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Sci Rev, 53: 237-277
|
[68] | Liu J N, Shu D G, Han J, et al. 2008. Origin, diversification, and relationships of Cambrian lobopods. Gondwana Res, 14: 277-283
|
[69] | Love G D, Grosjean E, Stalvies C, et al. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457: 718-721
|
[70] | Marshall C R. 2003. Nomethetism and understanding the Cambrian “explosion”. Palaios, 18: 195-56
|
[71] | Marshall C R. 2006. Explaining the Cambrian ‘‘explosion'''' of animals. Annu Rev Earth Planet Sci, 34: 355-384
|
[72] | Meert J G. 2003. Proterozoic East Gondwana: Supercontinent assembly and breakup. Special Publication 206, Eos, Transactions American Geophysical Union, 84: 372
|
[73] | Meert J G. 2011. Gondwanaland, formation. In: Reitner J, Thiel V, eds. Encyclopedia of Geobiology. Berlin: Springer. 434-436
|
[74] | Meysman F J R, Middelburg J J, Heip C H R. 2006. Bioturbation: A fresh look at Darwin''s last idea. Trends Ecol Evol, 21: 688-695
|
[75] | Müller K J, Walossek D, Zakharov A. 1995. Orsten type phosphatized soft-integument preservation and a new record from the Middle Cambrian Kuonamka Formation in Siberia. Neues Jahrbuch Geol Pal?ont, 197: 101-118
|
[76] | Nielsen C. 2012. Animal evolution: Interrelationships of the living phyla (3rd edition). Oxford: Oxford University Press. 1-402
|
[77] | Papineau D. 2010. Global biogeochemical changes at both ends of the Proterozoic: Insights from phosphorites. Astrobiology, 10: 165-181
|
[78] | Peel J S. 2010. A corset-like fossil from the Cambrian Sirius Passet Lagerstatte of North Greenland and its implications for cycloneuralian evolution. J Paleontol, 84: 332-340
|
[79] | Peters S E, Gaines R R. 2012. Formation of the ‘Great Unconformity'' as a trigger for the Cambrian explosion. Nature, 484: 363-366
|
[80] | Peterson K J, Davidson E H. 2000. Regulatory evolution and the origin of the bilaterians. Proc Natl Acad Sci USA, 97: 4430-4433
|
[81] | Peterson K J, Dietrich M R, McPeek M A. 2009. MicroRNAs and metazoan macroevolution: Insights into canalization, complexity, and the Cambrian explosion. Bioessays, 31: 736-722
|
[82] | Peterson K J, Mcpeek M A, Evans D A D. 2005. Tempo and mode of early animal evolution: Inferences from rocks, Hox, and molecular clocks. In: Vrba E S, Eldredge N, eds. Macroevolution: Diversity, Disparity, Contingency. Paleobiology, 31(Supplement to 2): 36-55
|
[83] | Petsch S T. 2004. The global oxygen cycle. In: Schlesinger W H, eds. Biogeochemistry. Treatise on Geochemistry, 8: 515-555
|
[84] | Philippe H, Brinkmann H, Copley R R, et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature, 470: 255-258
|
[85] | Planavsky N J, Rouxel O J, Bekker A. et al. 2010. The evolution of the marine phosphate reservoir. Nature, 467: 1088-1090
|
[86] | Poinar G J, Buckley R. 2006. Nematode (Nematoda: Mermithidae) and hairworm(Nematomorpha: Chordolidae)parasites in the early Cretaceous amber. J Invertebr Pathol, 93: 36-41
|
[87] | Poinar G J, Kerp H, Hass H. 2008. Palaeonema phyticum gen. n., sp. n. (Nematoda: Palaeonematidae fam. n.), a Devonian nematode associated with early land plants. Nematology, 10: 9-14
|
[88] | Porter S. 2011. The rise of predators. Geology, 39: 607-608
|
[89] | Reitner J. 1992. Coralline spongien: Der versuch einer phylogenetisch-taxonomischen analyse. Berliner Geowissenschaftish Abhandlung Reihe E (Pal?obiologie), 1: 1-200
|
[90] | Reitner J, W?rheide G. 2002. A Guide to the Classification of Sponges. In: Hooper J N A, Van Soest R W M, eds. Systema Porifera. New York: Kluwer Academic/Plenum. 52-68
|
[91] | Rogers J J W, Santosh M. 2004. Continents and Supercontinents. Oxford: Oxford University Press. 1-289
|
[92] | Rowland S M, Hicks M. 2004. The early Cambrian experiment in reef-building by metazoans. In: Lipps J H, Waggoner B M, eds. Neoproterozoic-Cambrian biological revolutions. The Paleontological Society Papers, 10: 107-124
|
[93] | Seilacher A. 2007. Trace Fossil Analysis. Heidelberg: Springer. 1-226
|
[94] | Seilacher A, Pflüger F. 1994. From biomats to benthic agriculture: A biohistoric revolution. In: Krumbein W E, Paterson D M, Stal L J, eds. Biostabilization of Sediments. Oldenburg: Universit?t Oldenburg Press. 97-105
|
[95] | Shu D G. 2008. Cambrian explosion: Birth of animal tree. Gondwana Res, 14: 219-240
|
[96] | Shu D G, Conway Morris S, Han J, et al. 2001. Primitive deuterostomes from the Chengjiang Lagerst?tte(Lower Cambrian, south China). Nature, 414: 419-424
|
[97] | Shu D G, Conway Morris S, Zhang Z F, et al. 2010. The earliest history of the deuterostomes, the importance of the Chengjiang Fossil-Lagerst?tte. Proc R Soc B-Biol Sci, 277: 165-174
|
[98] | Valentine J W, Erwin D H, Jablonski D. 1996. Developmental evolution of metazoan body plans: The fossil evidence. Dev Biol, 173: 373-381
|
[99] | Valentine J W, Moores E M. 1970. Plate-tectonic regulation of faunal diversity and sea level: A model. Nature, 228: 657-659
|
[100] | Vermeij G J. 1990. The origin of skeletons. Palaios, 4: 585-589
|
[101] | Wang J G, Chen D Z, Yan D T, et al. 2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chem Geol, 306: 129-138
|
[102] | Xiao S H, Yuan X L, Knoll A H. 2000. Eumetazoan fossils in terminal Proterozoic phosphorites? Proc Natl Acad Sci USA, 97: 13684-13689
|
[103] | Xiao S H, Zhang Y, Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproteozoic phosphorite. Nature, 391: 553-558
|
[104] | Yin L M, Zhu M Y, Knoll A H, et al. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446: 661-663
|
[105] | Yuan X L, Chen Z, Xiao S H, et al. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470: 390-393
|
[106] | Zhang Z F, Holmer L E, Skovsted C B, et al. 2013. A sclerite-bearing stem group entoproct from the early Cambrian and its implications. Sci Rep, 3: 1066-107
|
[107] | Shu D G, Isozaki Y, Zhang X L, et al. 2014. The birth and evolution of metazoans. Gondwana Res, 25: 896-909
|
[108] | Skovsted C B, Brock G A, Topper T P, et al. 2011. Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the early Cambrian of South Australia. Palaeontology, 54: 253-286
|
[109] | Sperling E A, Vinther J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol Dev, 12: 201-209
|
[110] | Squire R J, Campbell I H, Allen C M, et al. 2006. Did the Transgondwanan supermountain trigger the explosive radiation of animals on Earth? Earth Planet Sci Lett, 250: 116-133
|
[111] | Stanley S M. 1973. An ecological theory for the sudden origin of multicellular life in the Late Precambrian. Proc Natl Acad Sci USA, 70: 1486-89
|
[112] | Stanley S M. 1976. Ideas on the timing of metazoan diversification. Paleobiology, 2: 209-219
|
[113] | Szaniawski H. 2002. New evidence for the protoconodont origin of chaetognaths. Acta Palaeontol Pol, 47: 405-419
|
[114] | Tang F, Bengtson S, Wang Y, et al. 2011. Eoandromeda and the origin of Ctenophora. Evol Dev, 13: 408-414
|
[115] | Thayer C W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science, 203: 458-461
|
[116] | Todd J A, Taylor P D. 1992. The first fossil entoproct. Naturwissenschaften, 79: 311-314
|
[117] | Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400: 525-531
|
[118] | Valentine J W. 2001. How were vendobiont bodies patterned? Paleobiology, 27: 425-428
|