全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

矿物光电子与地球早期生命起源及演化初探

, PP. 1117-1123

Keywords: 天然半导体矿物,光电子,微生物,能量来源,生命起源

Full-Text   Cite this paper   Add to My Lib

Abstract:

?能量是一切生命活动的核心问题,生命体的能量来源与获取途径是地球早期生命起源与演化的关键科学问题.现有研究表明,生物体开始对太阳光能的大规模利用是早期地球生命演化的重要转折,生命随后逐渐发展并繁荣起来.然而,在生命活动中广泛存在着生物化学反应的电子转移过程,电子最初来源是否源自太阳光能以及如何源自太阳光能目前仍不清楚.数十亿年以来,太阳光理应一直激发着地球表面大量存在的半导体矿物产生光电子-空穴对,在早期地球表面处于还原环境与弱酸性介质条件下,半导体矿物产生的光生空穴极易被俘获,分离出的矿物光电子可有效还原二氧化碳为有机物质,提供生命起源所需物质.光电子在电势差的驱动下形成光电子传递链,可直接传递到原始细胞中以维持其新陈代谢过程.天然半导体矿物在早期生命起源过程中还能起到对细胞免遭紫外线辐射的保护作用,而这种保护作用是通过半导体矿物吸收紫外线来实现的.正是持续产生的较高能量的光电子被早期生命细胞所利用,天然半导体矿物光催化作用产生的光电子在早期生命起源过程中扮演着合成物质、保护细胞与提供能量的多种作用,这一机制至今仍在地球表层系统中发挥着重要作用.

References

[1]  李艳, 鲁安怀, 王长秋. 2007. 天然含铁闪锌矿的可见光催化还原活性研究. 岩石矿物学杂志, 26: 481-486
[2]  鲁安怀. 2003. 无机界矿物天然自净化功能之矿物光催化作用. 岩石矿物学杂志, 22: 323-331
[3]  鲁安怀, 郭延军, 刘娟, 等. 2004. 天然含钒金红石: 一种用于降解卤代有机污染物的光催化剂. 科学通报, 49: 2350-2354
[4]  鲁安怀, 李艳, 王鑫, 等. 2013. 半导体矿物介导非光合微生物利用光电子新途径. 微生物学通报, 40: 190-202
[5]  Blankenship R E, Tiede D M, Barber J, et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 332: 805-809
[6]  Chen Y, Lu A, Li Y, et al. 2011. Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. Environ Sci Technol, 45: 5689-5695
[7]  Chyba C, Sagan C. 1992. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature, 355: 125-32
[8]  Ding H, Li Y, Lu A, et al. 2010. Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresour Technol, 101: 3500-3505
[9]  Gorby Y A, Yanina S, McLean J S, et al. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA, 103: 11358-11363
[10]  Guzman M I, Martin S T. 2009. Prebiotic metabolism: Production by mineral photoelectrochemistry of α-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology, 9: 833-842
[11]  Haldane J B S. 1929. The origin of life. Rationalist Ann, 148: 3-10
[12]  Hernandez M E, Newman D K. 2001. Extracellular electron transfer. Cell Mol Life Sci, 58: 1562-1571
[13]  Kelley D S, Karson J A, Blackman D K, et al. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 N. Nature, 412: 145-149
[14]  Lovley D R, Coates J D, Blunt-Harris E L, et al. 1996. Humic substances as electron acceptors for microbial respiration. Nature, 382: 445-448
[15]  Lu A, Li Y, Jin S, et al. 2012. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat Commun, 3: 768-775
[16]  Martin W F. 2011. Early evolution without a tree of life. Biol Direct, 6: 1-25
[17]  Mulkidjanian A, Bychkov A, Dibrova D, et al. 2012. Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA, 109: E821-E830
[18]  Newman D K, Kolter R. 2000. A role for excreted quinones in extracellular electron transfer. Nature, 4: 94-97
[19]  Nielsen L P, Risgaard-Petersen N, Fossing H, et al. 2010. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature, 463: 1071-1074
[20]  Nisbet E G. 1987. The Young Earth: An Introduction to Archaean Geology. Cambridge: Cambridge University Press
[21]  Nisbet E G, Fowler C M R. 1996. Some liked it hot. Nature, 382: 404-405
[22]  Nisbet E G, Sleep N H. 2001. The habitat and nature of early life. Nature, 409: 1083-1091
[23]  Pfeffer C, Larsen S, Song J, et al. 2012. Filamentous bacteria transport electrons over centimetre distances. Nature, 491: 218-221
[24]  Powner M W, Gerland B, Sutherland J D. 2009. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature, 459: 239-242
[25]  Reguera G, McCarthy K D, Mehta T, et al. 2005. Extracellular electron transfer via microbial nanowires. Nature, 435: 1098-1101
[26]  Schidlowski M. 1988. A 3800 million-year old record of life from carbon in sedimentary rocks. Nature, 333: 313-318
[27]  Schoonen M, Xu Y, Strongin D. 1998. An introduction to geocatalysis. J Geochem Explor, 68: 201-215
[28]  Sleep N H, Meibom A, Fridriksson T, et al. 2004. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc Natl Acad Sci USA, 101: 12818-12823
[29]  Stüeken E E, Anderson R E, Bowman J S, et al. 2013. Did life originate from a global chemical reactor? Geobiology, 11: 101-126
[30]  Urey H C. 1962. Life-Forms in meteorites: Origin of life-like forms in carbonaceous chondrites introduction. Nature, 193: 1119-1123
[31]  Vaughan D J. 2006. Sulfide Mineralogy and Geochemistry. Chantilly: Mineralogical Society of America
[32]  Lane N, Allen J F, Martin W. 2010. How did LUCA make a living? Chemiosmosis in the origin of life. Bio Essays, 32: 271-280
[33]  Schidlowski M. 1998. Beginnings of terrestrial life: Problems of the early record and implications for extraterrestrial scenarios. SPIE''s International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics. 149-157
[34]  Weber K A, Achenbach L A, Coates J D. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol, 4: 752-764
[35]  Wigginton N, Haus K, Hochella M. 2007. Aquatic environmental nanoparticles. J Environ Monitor, 9: 1306-1316
[36]  Xiong Y, Shi L, Chen B, et al. 2006. High-Affinity Binding and Direct Electron Transfer to Solid Metals by the Shewanella oneidensis MR-1 Outer Membrane c-type Cytochrome OmcA. J Am Chem Soc, 128: 13978-13979
[37]  Xu Y, Schoonen M A. 2000. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral, 85: 543-556
[38]  Zhang X V, Ellery S P, Friend C M, et al. 2007. Photodriven reduction and oxidation reactions on colloidal semiconductor particles: Implications for prebiotic synthesis. J Photoch Photobio A, 185: 301-311

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133