全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

极端环境中的生命过程:生命与环境协同演化探讨

, PP. 1087-1095

Keywords: 能量,极端生命,适应,协同演化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?极端环境指的是不适宜于人类生存的自然环境,而恰恰是多数微生物栖息的甚至是必需的环境.位于进化树根部的超嗜热微生物暗示早期生命就起源于类似深海热液系统的高温,厌氧极端环境.生命的化学本质是通过能量输入而维持一个远离热动力学平衡的耗散结构的过程.生命只能以量子形态从环境的理化梯度中获取能量.能量代谢方式决定了生命的演化框架,生态系统的结构与细胞的生理状态.伴随着地球环境所经历的降温与逐步氧化的过程,微生物建立了相对统一的极端环境适应机制.我们现在能够通过对极端微生物的研究尝试重建早期生命的起源与演化过程,也可以找出基因组中的历史环境记录.“追寻能量”成为探寻包括地球在内生命边疆与未知生命在宇宙中的存在与适应性的重要途径.

References

[1]  王镜岩, 朱圣庚, 徐长法. 2008. 生物化学教程(第3版). 北京: 高等教育出版社
[2]  Ao P, Lee L W, Lidstrom M E, et al. 2008. Towards kinetic modeling of global metabolic networks: Methylobacterium extorquens Am1 growth as validation. Chin J Biotech, 24: 980-994
[3]  Auguet J C, Triado-Margarit X, Nomokonova N, et al. 2012. Vertical segregation and phylogenetic characterization of ammonia-oxidizing archaea in a deep oligotrophic lake. ISME J, 6: 1786-1797
[4]  Siddiqui K S, Cavicchioli R. 2006. Cold-adapted enzymes. Ann Rev Biochem, 75: 403-433
[5]  Stetter K O. 2006a. Hyperthermophiles in the history of life. Philos Trans R Soc B-Biol Sci, 361: 1837-1843
[6]  Stetter K O. 2006b. History of discovery of the first hyperthermophiles. Extremophiles, 10: 357-362
[7]  Takai K, Nakamura K. 2011. Archaeal diversity and community development in deep-sea hydrothermal vents. Curr Opin Microbiol, 14: 282-291
[8]  Thauer R K. 2011. Anaerobic oxidation of methane with sulfate: On the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol, 14: 292-299
[9]  Thauer R K, Kaster A K, Seedorf H, et al. 2008. Methanogenic Archaea: Ecologically relevant differences in energy conservation. Nat Rev Microbiol, 6: 579-591
[10]  Thorgersen M P M, Stirrett K K, Scott R A R, et al. 2012. Mechanism of oxygen detoxification by the surprisingly oxygen-tolerant hyperthermophilic Archaeon, Pyrococcus Furiosus. Proc Natl Acad Sci USA, 109: 18547-18552
[11]  Tijhuis L, Van Loosdrecht M C, Heijnen J J. 1993. A thermodynamically based correlation for maintenance gibbs rnergy tequirements in Aerobic and Anaerobic Chemotrophic Growth. Biotech Bioeng, 42: 509-519
[12]  Valentine D L. 2007. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol, 5: 316-323
[13]  Wang F P, Zhang Y, Chen Y, et al. 2014. Methanotrophic Archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J, doi: 10.1038/ismej.2013.212
[14]  Windman T, Zolotova N, Schwandner F, et al. 2007. Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems. Astrobiology, 7: 873-890
[15]  Xie X, Liang J, Pu T, et al. 2012. Phosphorothioate DNA as an antioxidant in cacteria. Nucleic Acids Res, 40: 9115-9124
[16]  Bae S S, Kim T W, Lee H S, et al. 2012. H2 production from Co, formate or starch using the hyperthermophilic archaeon, thermococcus onnurineus. Biotechnol Lett, 34: 75-79
[17]  Baross J A, Benner S A, Cody G D, et al. 2007. The Limits of Organic Life in Planetary Systems. Washington D C: The National Academies Press
[18]  Battistuzzi F U, Feijao A, Hedges S B. 2004. A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol, 4: 9
[19]  Bekker A, Holland H D, Wang P L, et al. 2004. Dating the rise of atmospheric oxygen. Nature, 427: 117-120
[20]  Biddle J F, Cardman Z, Mendlovitz H, et al. 2012. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J, 6: 1018-1031
[21]  Blank C E. 2009. Phylogenomic dating-the relative antiquity of archaeal metabolic and physiological traits. Astrobiology, 9: 193-219
[22]  Boussau B, Daubin V. 2010. Genomes as documents of evolutionary history. Trends Ecol Evol, 25: 224-232
[23]  Canfield D E, Kump L R. 2013. Carbon cycle makeover. Science, 339: 533-534
[24]  Cavicchioli R. 2006. Cold-adapted Archaea. Nat Rev Microbiol, 4: 331-343
[25]  D''Amico S, Collins T, Marx J C, et al. 2006. Psychrophilic microorganisms: Challenges for life. EMBO Reports, 7: 385-389
[26]  Daniel R M, Cowan D A. 2000. Biomolecular stability and life at high temperatures. Cell Mol Life Sci, 57: 250-264
[27]  David L A L, Alm E J E. 2011. Rapid evolutionary innovation during an Archaean genetic expansion. Nature, 469: 93-96
[28]  Falkowski P G, Fenchel T, Delong E F. 2008. The microbial engines that drive Earth''s biogeochemical Cycles. Science, 320: 1034-1039
[29]  Farquhar J, Bao H M, Thiemens M. 2000. Atmospheric influence of Earth''s earliest sulfur cycle. Science, 289: 756-758
[30]  Gribaldo S, Brochier-Armanet C. 2006. The origin and evolution of Archaea: A state of the art. Philos Trans R Soc B-Biol Sci, 361: 1007-1022
[31]  Hoehler T M, Jorgensen B B. 2013. Microbial life under extreme energy limitation. Nat Rev Microbiol, 11: 83-94
[32]  Hoehler T M. 2004. Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology, 2: 205-215
[33]  Hoehler T M. 2007. An energy balance concept for habitability. Astrobiology, 7: 824-838
[34]  Hoehler T M, Amend J P, Shock E L. 2007. Introduction—A “Follow the Energy” approach for astrobiology. Astrobiology, 7: 819-823
[35]  Huber C, Eisenreich W, Hecht S, et al. 2003. A possible primordial peptide cycle. Science, 301: 938-940
[36]  Huber C, W?chtersh?user G. 1998. Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: Implications for the origin of life. Science, 281: 670-672
[37]  Huber C, W?chtersh?user G. 2006. Alpha-gydroxy and alpha-amino acids under possible hadean, volcanic origin-of-life conditions. Science, 314: 630-632
[38]  Imlay J A. 2013. The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nat Rev Microbiol, 11: 443-454
[39]  Kallmeyer J, Pockalny R, Adhikari R R, et al. 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA, 109: 16213-16216
[40]  Kato C C, Qureshi M H M. 1999. Pressure response in deep-sea Piezophilic bacteria. J Mol Microb Biotech, 1: 87-92
[41]  Kaur A, Van P T, Busch C R, et al. 2010. Coordination of frontline defense mechanisms under severe oxidative stress. Mol Syst Biol, 6: 393-393
[42]  Kim Y J, Lee H S, Kim E S, et al. 2010. Formate-driven growth coupled with H2 production. Nature, 467: 352-356
[43]  Knauth L P. 2005. Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. Paleogeogr Paleoclimatol Paleoecol, 219: 53-69
[44]  Lang S Q, Butterfield D A, Schulte M, et al. 2010. Elevated concentrations of formate, acetate and dissolved organic carbon found at the lost city hydrothermal field. Geochim Cosmochim Acta, 74: 12-12
[45]  Lenton T M, Schellnhuber H J, Szathmary E. 2004. Climbing the co-evolution ladder. Nature, 431: 913-913
[46]  Macalady J L, Vestling M M, Baumler D, et al. 2004. Tetraether-linked membrane monolayers in Ferroplasma spp: A key to survival in acid. Extremophiles, 8: 411-419
[47]  Martin W, Baross J, Kelley D, et al. 2008. Hydrothermal vents and the origin of life. Nat Rev Microbiol, 6: 805-814
[48]  Partin C A, Bekker A, Planavsky N J, et al. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet Sci Lett, 369: 284-293
[49]  Price P B, Sowers T. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA, 101: 4631-4636
[50]  Roche B, Aussel L, Ezraty B, et al. 2013. Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity. Biochim Biophys Acta, 1827: 455-469
[51]  Rossel P E, Elvert M, Ramette A, et al. 2011. Factors controlling the distribution of Anaerobic Methanotrophic communities in marine environments: Evidence from intact Polar membrane lipids. Geochim Cosmochim Acta, 75: 164-184
[52]  Roy H, Kallmeyer J, Adhikari R R, et al. 2012. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science, 336: 922-925
[53]  Schr?dinger E. 1944. What Is Life. Dublin: Cambridge University Press. 194

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133