Ao P, Lee L W, Lidstrom M E, et al. 2008. Towards kinetic modeling of global metabolic networks: Methylobacterium extorquens Am1 growth as validation. Chin J Biotech, 24: 980-994
[3]
Auguet J C, Triado-Margarit X, Nomokonova N, et al. 2012. Vertical segregation and phylogenetic characterization of ammonia-oxidizing archaea in a deep oligotrophic lake. ISME J, 6: 1786-1797
[4]
Siddiqui K S, Cavicchioli R. 2006. Cold-adapted enzymes. Ann Rev Biochem, 75: 403-433
[5]
Stetter K O. 2006a. Hyperthermophiles in the history of life. Philos Trans R Soc B-Biol Sci, 361: 1837-1843
[6]
Stetter K O. 2006b. History of discovery of the first hyperthermophiles. Extremophiles, 10: 357-362
[7]
Takai K, Nakamura K. 2011. Archaeal diversity and community development in deep-sea hydrothermal vents. Curr Opin Microbiol, 14: 282-291
[8]
Thauer R K. 2011. Anaerobic oxidation of methane with sulfate: On the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol, 14: 292-299
[9]
Thauer R K, Kaster A K, Seedorf H, et al. 2008. Methanogenic Archaea: Ecologically relevant differences in energy conservation. Nat Rev Microbiol, 6: 579-591
[10]
Thorgersen M P M, Stirrett K K, Scott R A R, et al. 2012. Mechanism of oxygen detoxification by the surprisingly oxygen-tolerant hyperthermophilic Archaeon, Pyrococcus Furiosus. Proc Natl Acad Sci USA, 109: 18547-18552
[11]
Tijhuis L, Van Loosdrecht M C, Heijnen J J. 1993. A thermodynamically based correlation for maintenance gibbs rnergy tequirements in Aerobic and Anaerobic Chemotrophic Growth. Biotech Bioeng, 42: 509-519
[12]
Valentine D L. 2007. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol, 5: 316-323
[13]
Wang F P, Zhang Y, Chen Y, et al. 2014. Methanotrophic Archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J, doi: 10.1038/ismej.2013.212
[14]
Windman T, Zolotova N, Schwandner F, et al. 2007. Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems. Astrobiology, 7: 873-890
[15]
Xie X, Liang J, Pu T, et al. 2012. Phosphorothioate DNA as an antioxidant in cacteria. Nucleic Acids Res, 40: 9115-9124
[16]
Bae S S, Kim T W, Lee H S, et al. 2012. H2 production from Co, formate or starch using the hyperthermophilic archaeon, thermococcus onnurineus. Biotechnol Lett, 34: 75-79
[17]
Baross J A, Benner S A, Cody G D, et al. 2007. The Limits of Organic Life in Planetary Systems. Washington D C: The National Academies Press
[18]
Battistuzzi F U, Feijao A, Hedges S B. 2004. A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol, 4: 9
[19]
Bekker A, Holland H D, Wang P L, et al. 2004. Dating the rise of atmospheric oxygen. Nature, 427: 117-120
[20]
Biddle J F, Cardman Z, Mendlovitz H, et al. 2012. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J, 6: 1018-1031
[21]
Blank C E. 2009. Phylogenomic dating-the relative antiquity of archaeal metabolic and physiological traits. Astrobiology, 9: 193-219
[22]
Boussau B, Daubin V. 2010. Genomes as documents of evolutionary history. Trends Ecol Evol, 25: 224-232
[23]
Canfield D E, Kump L R. 2013. Carbon cycle makeover. Science, 339: 533-534
[24]
Cavicchioli R. 2006. Cold-adapted Archaea. Nat Rev Microbiol, 4: 331-343
[25]
D''Amico S, Collins T, Marx J C, et al. 2006. Psychrophilic microorganisms: Challenges for life. EMBO Reports, 7: 385-389
[26]
Daniel R M, Cowan D A. 2000. Biomolecular stability and life at high temperatures. Cell Mol Life Sci, 57: 250-264
[27]
David L A L, Alm E J E. 2011. Rapid evolutionary innovation during an Archaean genetic expansion. Nature, 469: 93-96
[28]
Falkowski P G, Fenchel T, Delong E F. 2008. The microbial engines that drive Earth''s biogeochemical Cycles. Science, 320: 1034-1039
[29]
Farquhar J, Bao H M, Thiemens M. 2000. Atmospheric influence of Earth''s earliest sulfur cycle. Science, 289: 756-758
[30]
Gribaldo S, Brochier-Armanet C. 2006. The origin and evolution of Archaea: A state of the art. Philos Trans R Soc B-Biol Sci, 361: 1007-1022
[31]
Hoehler T M, Jorgensen B B. 2013. Microbial life under extreme energy limitation. Nat Rev Microbiol, 11: 83-94
[32]
Hoehler T M. 2004. Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology, 2: 205-215
[33]
Hoehler T M. 2007. An energy balance concept for habitability. Astrobiology, 7: 824-838
[34]
Hoehler T M, Amend J P, Shock E L. 2007. Introduction—A “Follow the Energy” approach for astrobiology. Astrobiology, 7: 819-823
[35]
Huber C, Eisenreich W, Hecht S, et al. 2003. A possible primordial peptide cycle. Science, 301: 938-940
[36]
Huber C, W?chtersh?user G. 1998. Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: Implications for the origin of life. Science, 281: 670-672
[37]
Huber C, W?chtersh?user G. 2006. Alpha-gydroxy and alpha-amino acids under possible hadean, volcanic origin-of-life conditions. Science, 314: 630-632
[38]
Imlay J A. 2013. The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nat Rev Microbiol, 11: 443-454
[39]
Kallmeyer J, Pockalny R, Adhikari R R, et al. 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA, 109: 16213-16216
[40]
Kato C C, Qureshi M H M. 1999. Pressure response in deep-sea Piezophilic bacteria. J Mol Microb Biotech, 1: 87-92
[41]
Kaur A, Van P T, Busch C R, et al. 2010. Coordination of frontline defense mechanisms under severe oxidative stress. Mol Syst Biol, 6: 393-393
[42]
Kim Y J, Lee H S, Kim E S, et al. 2010. Formate-driven growth coupled with H2 production. Nature, 467: 352-356
[43]
Knauth L P. 2005. Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. Paleogeogr Paleoclimatol Paleoecol, 219: 53-69
[44]
Lang S Q, Butterfield D A, Schulte M, et al. 2010. Elevated concentrations of formate, acetate and dissolved organic carbon found at the lost city hydrothermal field. Geochim Cosmochim Acta, 74: 12-12
[45]
Lenton T M, Schellnhuber H J, Szathmary E. 2004. Climbing the co-evolution ladder. Nature, 431: 913-913
[46]
Macalady J L, Vestling M M, Baumler D, et al. 2004. Tetraether-linked membrane monolayers in Ferroplasma spp: A key to survival in acid. Extremophiles, 8: 411-419
[47]
Martin W, Baross J, Kelley D, et al. 2008. Hydrothermal vents and the origin of life. Nat Rev Microbiol, 6: 805-814
[48]
Partin C A, Bekker A, Planavsky N J, et al. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet Sci Lett, 369: 284-293
[49]
Price P B, Sowers T. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA, 101: 4631-4636
[50]
Roche B, Aussel L, Ezraty B, et al. 2013. Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity. Biochim Biophys Acta, 1827: 455-469
[51]
Rossel P E, Elvert M, Ramette A, et al. 2011. Factors controlling the distribution of Anaerobic Methanotrophic communities in marine environments: Evidence from intact Polar membrane lipids. Geochim Cosmochim Acta, 75: 164-184
[52]
Roy H, Kallmeyer J, Adhikari R R, et al. 2012. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science, 336: 922-925
[53]
Schr?dinger E. 1944. What Is Life. Dublin: Cambridge University Press. 194