全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青海湖二郎剑钻孔的粘土矿物学研究

, PP. 1298-1311

Keywords: 青海湖,粘土矿物,古气候,风化历史,构造隆升

Full-Text   Cite this paper   Add to My Lib

Abstract:

?位于青藏高原东北边缘的青海湖盆地拥有巨厚的新生代沉积,较好地记录了湖盆形成以来的古气候和古环境演化历史,对认识青藏高原东北部隆升过程和东亚气候变化具有重要的科学意义.但迄今为止,对青海湖沉积物长时间尺度的研究尚不多见,对沉积矿物学的研究较少涉及.利用X射线衍射分析技术,基于麦夸特算法对青海湖1108.95m长的二郎剑钻孔岩芯开展了系统的粘土矿物学研究,获得了该钻孔沉积物中粘土矿物的组成、相对含量、化学指数和结晶学特征等方面的信息.结合钻孔的粒度指标,探讨了晚中新世以来高原构造隆升事件和青海湖地区的风化历史与古气候演化过程.研究表明,麦夸特算法在粘土矿物含量计算中能取得较好的效果,二郎剑钻孔中的粘土矿物以伊利石和绿泥石为主,高岭石和蒙脱石的含量较低;粘土矿物主要为碎屑成因,指示了化学风化作用较弱而物理风化作用强.各项粘土矿物学指标和粒度组分的变化特征揭示了自钻孔底部沉积以来青海湖地区处在总体相对寒冷干旱的气候环境下,并经历了5次大的环境演化阶段.其中在晚中新世早期气候相对温和湿润,之后具趋冷趋干的特点;在晚中新世晚期到上新世早期经历了一个短暂的温暖期之后,一直到第四纪气候持续变得寒冷干旱.各项指标可能也蕴含了自晚中新世以来青藏高原东北部发生过多次构造隆升事件的信息.

References

[1]  Franke D, Ehrmann W. 2010. Neogene clay mineral assemblages in the AND-2A drill core (McMurdo Sound, Antarctica) and their implications for environmental change. Paleogeogr Paleoclimatol Paleoecol, 286: 55-65
[2]  Griffin J J, Windom H, Goldberg E D. 1968. The distribution of clay minerals in the world ocean. Deep-Sea Res-Oceanogr Abs, 15: 433-459
[3]  Guyot J L, Jouanneau J, Soares L, et al. 2007. Clay mineral composition of river sediments in the Amazon Basin. Catena, 71: 340-356
[4]  Hao H, Ferguson D K, Chang H, et al. 2012. Vegetation and climate of the Lop Nur area, China, during the past 7 million years. Clim Change, 113: 323-338
[5]  Henderson A C, Holmes J A. 2009. Palaeolimnological evidence for environmental change over the past millennium from Lake Qinghai sediments: A review and future research prospective. Quat Int, 194: 134-147
[6]  Ji J F, Balsam W, Shen J, et al. 2009. Centennial blooming of anoxygenic phototrophic bacteria in Qinghai Lake linked to solar and monsoon activities during the last 18000 years. Quat Sci Rev, 28: 1304-1308
[7]  Kisch H J. 1991. Illite crystallinity: Recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J Metamorph Geol, 9: 665-670
[8]  Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003, doi: 10.1029/2004PA001071
[9]  Liu X J, Colman S M, Brown E T, et al. 2014. Abrupt deglaciation on the northeastern Tibetan Plateau: Evidence from Lake Qinghai. J Paleolimn, 51: 223-240
[10]  Liu Z F, Trentesaux A, Clemens S C, et al. 2003. Clay mineral assemblages in the northern South China Sea: Implications for East Asian monsoon evolution over the past 2 million years. Mar Geol, 201: 133-146
[11]  Liu Z F, Colin C, Trentesaux A, et al. 2004. Erosional history of the eastern Tibetan Plateau since 190 kyr ago: Clay mineralogical and geochemical investigations from the southwestern South China Sea. Mar Geol, 209: 1-18
[12]  Liu Z F, Colin C, Huang W, et al. 2007. Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochem Geophys Geosyst, 8, doi: 10.1029/2006GC001490
[13]  Müller G, Irion G, F?rstner U. 1972. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften, 59: 158-164
[14]  Merriman R J, Roberts B. 2001. Low-grade metamorphism in the Scottish Southern Uplands terrane: Deciphering the patterns of accretionary burial, shearing and cryptic aureoles. Trans R Soc Edinb-Earth Sci, 91: 521-538
[15]  Moore D M, Reynolds R C. 1989. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford County: Oxford University Press. 101-196
[16]  Pal D K, Bhattacharyya T, Sinha R, et al. 2012. Clay minerals record from Late Quaternary drill cores of the Ganga Plains and their implications for provenance and climate change in the Himalayan foreland. Paleogeogr Paleoclimatol Paleoecol, 356: 27-37
[17]  Singer A. 1984. The paleoclimatic interpretation of clay minerals in sediments—A review. Ear-Sci Rev, 21: 251-293
[18]  Tian J, Zhao Q, Wang P, et al. 2008. Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography, 23: PA3210, doi: 10.1029/2007PA001552
[19]  Wang W, Kirby E, Peizhen Z, et al. 2013. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension. Geol Soc Am Bull, 125: 377-400
[20]  Wang Z C, Zhang P Z, Garzione C N, et al. 2012. Magnetostratigraphy and depositional history of the Miocene Wushan basin on the NE Tibetan plateau, China: Implications for middle Miocene tectonics of the West Qinling fault zone. J Asian Earth Sci, 44: 189-202
[21]  Warr L N, Rice A H N. 1994. Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. J Metamorph Geol, 12: 141-152
[22]  Xu H, Ai, L, Tan L, et al. 2006. Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications. Chem Geol, 235: 262-275
[23]  Yu J Q, Kelts K R. 2002. Abrupt changes in climatic conditions across the late-glacial/Holocene transition on the NE Tibet-Qinghai Plateau: Evidence from Lake Qinghai, China. J Paleolimn, 28: 195-206
[24]  Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686-693
[25]  Zhang H P, Craddock W H, Lease R O, et al. 2012. Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north-eastern Tibetan Plateau. Basin Res, 24: 31-50
[26]  Zhao L, Ji J F, Chen J, et al. 2005. Variations of illite/chlorite ratio in Chinese loess sections during the last glacial and interglacial cycle: Implications for monsoon reconstruction. Geophys Res Lett, 32: L20718, doi: 10.1029/2005GL024145Zheng H B, Powell C M, An, Z S, et al. 2000. Pliocene uplift of the northern Tibetan Plateau. Geology, 28: 715-718
[27]  艾莉, 强小科, 宋友桂, 等. 2011. 青海湖晚更新世沉积物中胶黄铁矿的发现及其环境指示意义. 地球物理学报, 54: 2309-2316
[28]  安芷生, 王平, 沈吉, 等. 2006. 青海湖湖底构造及沉积物分布的地球物理勘探研究. 中国科学D辑: 地球科学, 36: 332-341
[29]  陈敬安, 万国江, 张峰, 等. 2003. 不同时间尺度下的湖泊沉积物环境记录—以沉积物粒度为例. 中国科学D辑: 地球科学, 33: 563-568
[30]  郭正堂, Fedoroff N. 1992. 西峰和西安黄土中盐碱化古土壤气候意义的初步探讨. 第四纪研究, 12: 107-117
[31]  季峻峰, 陈骏, 鹿化煜. 1998. 陕西洛川黄土中伊利石成因的透射电镜证据. 科学通报, 43: 2095-2098
[32]  李吉均, 方小敏. 1998. 青藏高原隆起与环境变化研究. 科学通报, 43: 1569-1574
[33]  刘东生. 1985. 黄土与环境. 北京: 科学出版社. 44-300, 342-377
[34]  鹿化煜, 安芷生, 王晓勇, 等. 2004. 最近14 Ma青藏高原东北缘阶段性隆升的地貌证据. 中国科学D辑: 地球科学, 34: 855-864
[35]  强小科, 安芷生, 宋友桂, 等. 2010. 晚渐新世以来中国黄土高原风成红粘土序列的发现: 亚洲内陆干旱化起源的新记录. 中国科学: 地球科学, 40: 1479-1488
[36]  尚雪, 李小强, 安芷生, 等. 2009. 青海湖流域表土花粉分析. 中国科学D辑: 地球科学, 39: 1288-1296
[37]  王朝文, 洪汉烈, 向树元, 等. 2008. 东昆仑阿拉克湖早更新世沉积物黏土矿物特征及其古气候环境意义. 地质科技情报, 27: 37-42
[38]  王行信, 王国力, 蔡进功, 等. 2006. 有机黏土复合体与油气生成. 北京: 石油工业出版社. 1-56
[39]  王苏民, 窦鸿身. 1998. 中国湖泊志. 北京: 科学出版社. 32-34
[40]  徐昶, 林乐枝, 杨波. 1989. 青海湖沉积物中的粘土矿物. 地质科学, 4: 348-354
[41]  殷志强, 秦小光, 吴金水, 等. 2008. 湖泊沉积物粒度多组分特征及其成因机制研究. 第四纪研究, 28: 345-353
[42]  曾承. 2008. 青海湖及邻近地区碳酸盐同位素环境记录与季风-干旱环境变迁. 博士学位论文. 北京: 中国科学院大学. 37-38
[43]  曾蒙秀, 宋友桂. 2012. 基于麦夸特算法的X射线衍射物相定量分析的影响因素研究. 岩矿测试, 31: 798-806
[44]  曾蒙秀, 宋友桂. 2013a. 麦夸特算法在X射线衍射物相定量分析中的应用. 地球科学: 中国地质大学学报, 38: 431-440
[45]  曾蒙秀, 宋友桂. 2013b. 西风区昭苏黄土剖面中碳酸盐矿物组成及其古环境意义辨识. 第四纪研究, 33: 424-436
[46]  曾蒙秀, 宋友桂. 2013c. 新疆伊犁昭苏黄土剖面中的矿物组成及其风化意义. 地质论评, 59: 575-586
[47]  中国科学院兰州分院, 中国科学院西部资源环境研究中心合编. 1994. 青海湖近代环境的演化和预测. 北京: 科学出版社. 1-36
[48]  中华人民共和国石油天然气行业标准. 2010. 沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法. 北京: 石油工业出版社. 1-12
[49]  An Z S, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411: 62-66
[50]  An Z S, Ai L, Song Y G, et al. 2006. Lake Qinghai scientific drilling project. Sci Drill, 1: 20-22
[51]  An Z S, Colman S M, Zhou W J, et al. 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci Rep, 2, doi: 10.1038/srep00619
[52]  Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull, 76: 803-832
[53]  Chamley H. 1989. Clay Sedimentology. New York: Spring Verlag Berlin Heidelberg. 1-120
[54]  Chang H, Ao H, An Z, et al. 2012. Magnetostratigraphy of the Suerkuli Basin indicates Pliocene (3.2 Ma) activity of the middle Altyn Tagh Fault, northern Tibetan Plateau. J Asian Earth Sci, 44: 169-175
[55]  David R, Ma H Z, David B M, et al. 2010. Paleoenvironmental and archaeological investigations at Qinghai Lake, western China: Geomorphic and chronometric evidence of lake level history. Quat Int, 218: 29-44
[56]  Ehrmann W U. 1998. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Paleogeogr Paleoclimatol Paleoecol, 139: 213-231
[57]  Esquevin J. 1969. Influence de la composition chimique des illites sur leur cristallinitd. Bull Cent Rech Pau-SNPA, 3: 147-153
[58]  Fang X M, Yan M D, Voo R V D, et al. 2005. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. Geol Soc Am Bull, 117: 1208-1225

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133