[1] | Nealson K H. 1982. Microbiological oxidation and reduction of iron. In: Holland H D, Schilowski M, eds. Mineral Deposits and the Evolution of the Biosphere. Berlin: Springer. 51-65
|
[2] | Nealson K H, Myers C R. 1990. Iron reduction by bacteria: A potential role in the genesis of banded iron formations. Am J Sci, 290-A: 35-45
|
[3] | Neubauer S C, Emerson D, Megonigal J P. 2002. Life at the energetic edge: Kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl Environ Microbiol, 68: 3988-3995
|
[4] | Pacton M, Fiet N, Gorin G E. 2007. Bacterial activity and preservation of sedimentary organic matter: The role of exopolymeric substances. Geomicrobiol J, 24: 571-581
|
[5] | Peters K E, Moldowan J M. 1993. The Biomarker Guide. Engelwood Cliffs: Prentice Hall
|
[6] | Planavsky N, Rouxel O, Bekker A, et al. 2009. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth Planet Sci Lett, 286: 230-242
|
[7] | Posth N R, K?hler I, Swanner E D, et al. 2013. Simulating Precambrian banded iron formation diagenesis. Chem Geol, 362: 66-73
|
[8] | Roden E E, Sobolev D, Glazer B, et al. 2004. Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface. Geomicrobiol J, 21: 379-391
|
[9] | Schwertmann U, Cornell R M. 2000. Iron Oxides in the Laboratory: Preparation and Characterization. 2nd ed. New York: Wiley-VCH. 188
|
[10] | Schwertmann U, Friedl J, Stanjek H. 1999. From Fe (III) ions to ferrihydrite and then to hematite. J Colloid Interf Sci, 209: 215-223
|
[11] | Spring S. 2006. The Genera Leptothrix and Sphaerotilus. In: Rosenberg E, Stackebrandt E, Thompson F, et al. eds. The Prokarytoes. 3rd ed. Berlin-Heidelberg: Springer. 758-777
|
[12] | Straub K L, Benz M, Schink B, et al. 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol, 62: 1458-1460
|
[13] | Straub K L, Hanzlik M, Buchholz-Cleven B E. 1998. The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria. Syst Appl Microbiol, 21: 442-449
|
[14] | Stumm W, Morgan J J. 1981. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. 2nd ed. New York: Wiley-Interscience
|
[15] | Sumner M. 1963. Effect of iron oxides on positive and negative charges in clays and soils. Clay Min Bull, 5: 218-226
|
[16] | Taylor K G, Konhauser K O. 2011. Iron in Earth surface systems: A major player in chemical and biological processes. Elements, 7: 83-88
|
[17] | Trouwborst R E, Johnston A, Koch G, et al. 2007. Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications for Precambrian Fe (II) oxidation. Geochim Cosmochim Acta, 71: 4629-4643
|
[18] | Vatter A E, Wolfe R S. 1956. Electron microscopy of Gallionella ferruginea. J Bacter, 72: 248
|
[19] | Webber K A, Achenbach L A, Coates J D. 2006. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol, 4: 752-764
|
[20] | Westall F, de Wit M J, Dann J, et al. 2001. Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res, 106: 93-116
|
[21] | Westall F, Folk R L. 2003. Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua Greenstone Belt: Implications for the search for life in ancient rocks. Precambrian Res, 126: 313-330
|
[22] | 赵振华. 2010. 条带状铁建造(BIF)与地球大氧化事件. 地球前缘, 17: 1-12
|
[23] | Banfield J F, Welch S A, Zhang H, et al. 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 289: 751-754
|
[24] | Battistuzzi F U, Feijao A , Hedges B. 2004. A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol, 4: 44, doi: 10.1186/1471-2148-4-44
|
[25] | Bekker A, Slack J F, Planavsky N, et al. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol, 105: 467-508
|
[26] | Bird L J, Bonnefoy V, Newman D K. 2011. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol, 19: 330-340
|
[27] | Brocks J J, Buick R, Summons R E, et al. 2003. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta, 67: 4321-4335
|
[28] | Canfield D E. 2005. The early history of atmospheric oxygen: Homage to Robert M Garrels. Annu Rev Earth Planet Sci, 33: 1-36
|
[29] | Chan C S, Fakra S C, Emerson D, et al. 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: Implications for biosignature formation. ISME J, 5: 717-727
|
[30] | Cloud P E. 1965. Significance of the Gunflint (Precambrian) Microflora: Photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science, 148: 27-35
|
[31] | Ehrenreich A, Widdel F. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol, 60: 4517-4526
|
[32] | Ehrlich H, Newman D. 2009. Geomicrobiology. 5th ed. New York: CRC Press (Taylor & Francis Group). 298
|
[33] | Emerson D, Fleming E J , McBeth J M. 2010. Iron-oxidizing bacteria: An environmental and genomic perspective. Annu Rev Microbiol, 64: 561-583
|
[34] | Feitknecht W, Michaelis W. 1962. über die Hydrolyse von Eisen(III)-perchlorat-L?sungen. Helv Chim Acta, 45: 212-224
|
[35] | Flemming H C, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol, 8: 623-633
|
[36] | Fratesi S E, Lynch F L, Kirkland B L, et al. 2004. Effects of SEM preparation techniques on the appearance of bacteria and biofilms in the Carter Sandstone. J Sediment Res, 74: 858
|
[37] | Gole M J. 1980. Mineralogy and petrology of very-low-metamorphic grade Archaean banded iron-formations, Weld Range, Western Australia. Am Mineral, 65: 8-25
|
[38] | Hallbeck L, Pedersen K. 1990. Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea. J Gen Microbiol, 136: 1675-1680
|
[39] | Hallberg R, Ferris F G. 2004. Biomineralization by Gallionella. Geomicrobiol J, 21: 325-330
|
[40] | Hedrich S, Schl?mann M, Johnson D B. 2011. The iron-oxidizing proteobacteria. Microbiology, 157: 1551-1564
|
[41] | Hofmann B A, Farmer J D, von Blanckenburg F, et al. 2008. Subsurface filamentous fabrics: An evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology. Astrobiology, 8: 87-117
|
[42] | Holm N G. 1987. Possible biological origin of banded iron formations from hydrothermal solutions. Origins Life Evol B, 17: 229-250
|
[43] | Holm N G. 1989. The 13C/12C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations. Chem Geol, 77: 41-45
|
[44] | Kappler A, Newman D K. 2004. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotropic bacteria. Geochim Cosmochim Acta, 68: 1217-1226
|
[45] | Kappler A, Pasquero C, Konhauser K O, et al. 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 33: 865-868
|
[46] | Kaufman A J, Hayes J M, and Klein C. 1990. Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. Geochim Cosmochim Acta, 54: 3461-3473
|
[47] | Konhauser K O. 1998. Diversity of bacterial iron mineralization. Earth-Sci Rev, 43: 91-121
|
[48] | Konhauser K O. 2009. Introduction to Geomicrobiology. Malden: Wiley-Blackwell. 340-345
|
[49] | Konhauser K O, Hamade T, Raiswell R, et al. 2002. Could bacteria have formed the Precambrian banded iron formations? Geology, 30: 1079-1082
|
[50] | Konhauser K O, Kappler A, Roden E E. 2011. Iron in microbial metabolisms. Elements, 7: 89-93
|
[51] | Li Y L, Konhauser K O, Cole D R, et al. 2011. Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology, 39: 707-710
|
[52] | Li Y L, Konhauser K O, Kappler A, et al. 2013. Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations. Earth Planet Sci Lett, 361: 229-237
|
[53] | Murad E, Johnson J H. 1987. Iron oxides and oxyhydroxides. In: Long G, ed. M?ssbauser Spectroscopy Applied to Inorganic Chemistry. New York: Plenum. 507-582
|