全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

模拟成岩或低级变质作用对铁氧化菌席的影响

, PP. 1263-1272

Keywords: 早期生物圈,铁氧化菌,胞外聚合物,成岩-低级变质模拟实验,铁氧化物

Full-Text   Cite this paper   Add to My Lib

Abstract:

?生存于微氧、近中性pH环境的铁氧化细菌所形成大量的螺旋柄状或长杆鞘状胞外聚合物有利于沉淀其环境中的铁氧化物,而这些胞外聚合物可被视为其地球微生物学标志.太古代晚期至早元古代的海洋是微氧富铁的环境,因此铁氧化代谢成为当时生物圈的重要组成部分,但与之相关的生物物质及铁矿化记录在经历漫长的地质演化后不可避免的发生变化而难以识别.本研究实验模拟了嗜中性微好氧铁氧化菌席可能经历的成岩作用,通过对比现代铁氧化细菌产生的胞外聚合物及铁氧化物在经历高温-高压前后的变化,揭示了生物物质-矿物体系在成岩作用中可能经历的变化过程.实验结果显示螺旋柄状物和长杆鞘状物以及铁氧化物球状聚合物在100MPa和300℃作用之后,其生物结构特征仍可以识别,表明微生物有机质-铁氧化物混合体系可能在地质记录中被一定程度的保存,为前寒武沉积记录中铁代谢的起源和演化的识别提供了参考.

References

[1]  Nealson K H. 1982. Microbiological oxidation and reduction of iron. In: Holland H D, Schilowski M, eds. Mineral Deposits and the Evolution of the Biosphere. Berlin: Springer. 51-65
[2]  Nealson K H, Myers C R. 1990. Iron reduction by bacteria: A potential role in the genesis of banded iron formations. Am J Sci, 290-A: 35-45
[3]  Neubauer S C, Emerson D, Megonigal J P. 2002. Life at the energetic edge: Kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl Environ Microbiol, 68: 3988-3995
[4]  Pacton M, Fiet N, Gorin G E. 2007. Bacterial activity and preservation of sedimentary organic matter: The role of exopolymeric substances. Geomicrobiol J, 24: 571-581
[5]  Peters K E, Moldowan J M. 1993. The Biomarker Guide. Engelwood Cliffs: Prentice Hall
[6]  Planavsky N, Rouxel O, Bekker A, et al. 2009. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth Planet Sci Lett, 286: 230-242
[7]  Posth N R, K?hler I, Swanner E D, et al. 2013. Simulating Precambrian banded iron formation diagenesis. Chem Geol, 362: 66-73
[8]  Roden E E, Sobolev D, Glazer B, et al. 2004. Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface. Geomicrobiol J, 21: 379-391
[9]  Schwertmann U, Cornell R M. 2000. Iron Oxides in the Laboratory: Preparation and Characterization. 2nd ed. New York: Wiley-VCH. 188
[10]  Schwertmann U, Friedl J, Stanjek H. 1999. From Fe (III) ions to ferrihydrite and then to hematite. J Colloid Interf Sci, 209: 215-223
[11]  Spring S. 2006. The Genera Leptothrix and Sphaerotilus. In: Rosenberg E, Stackebrandt E, Thompson F, et al. eds. The Prokarytoes. 3rd ed. Berlin-Heidelberg: Springer. 758-777
[12]  Straub K L, Benz M, Schink B, et al. 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol, 62: 1458-1460
[13]  Straub K L, Hanzlik M, Buchholz-Cleven B E. 1998. The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria. Syst Appl Microbiol, 21: 442-449
[14]  Stumm W, Morgan J J. 1981. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. 2nd ed. New York: Wiley-Interscience
[15]  Sumner M. 1963. Effect of iron oxides on positive and negative charges in clays and soils. Clay Min Bull, 5: 218-226
[16]  Taylor K G, Konhauser K O. 2011. Iron in Earth surface systems: A major player in chemical and biological processes. Elements, 7: 83-88
[17]  Trouwborst R E, Johnston A, Koch G, et al. 2007. Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications for Precambrian Fe (II) oxidation. Geochim Cosmochim Acta, 71: 4629-4643
[18]  Vatter A E, Wolfe R S. 1956. Electron microscopy of Gallionella ferruginea. J Bacter, 72: 248
[19]  Webber K A, Achenbach L A, Coates J D. 2006. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol, 4: 752-764
[20]  Westall F, de Wit M J, Dann J, et al. 2001. Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res, 106: 93-116
[21]  Westall F, Folk R L. 2003. Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua Greenstone Belt: Implications for the search for life in ancient rocks. Precambrian Res, 126: 313-330
[22]  赵振华. 2010. 条带状铁建造(BIF)与地球大氧化事件. 地球前缘, 17: 1-12
[23]  Banfield J F, Welch S A, Zhang H, et al. 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 289: 751-754
[24]  Battistuzzi F U, Feijao A , Hedges B. 2004. A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol, 4: 44, doi: 10.1186/1471-2148-4-44
[25]  Bekker A, Slack J F, Planavsky N, et al. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol, 105: 467-508
[26]  Bird L J, Bonnefoy V, Newman D K. 2011. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol, 19: 330-340
[27]  Brocks J J, Buick R, Summons R E, et al. 2003. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta, 67: 4321-4335
[28]  Canfield D E. 2005. The early history of atmospheric oxygen: Homage to Robert M Garrels. Annu Rev Earth Planet Sci, 33: 1-36
[29]  Chan C S, Fakra S C, Emerson D, et al. 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: Implications for biosignature formation. ISME J, 5: 717-727
[30]  Cloud P E. 1965. Significance of the Gunflint (Precambrian) Microflora: Photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science, 148: 27-35
[31]  Ehrenreich A, Widdel F. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol, 60: 4517-4526
[32]  Ehrlich H, Newman D. 2009. Geomicrobiology. 5th ed. New York: CRC Press (Taylor & Francis Group). 298
[33]  Emerson D, Fleming E J , McBeth J M. 2010. Iron-oxidizing bacteria: An environmental and genomic perspective. Annu Rev Microbiol, 64: 561-583
[34]  Feitknecht W, Michaelis W. 1962. über die Hydrolyse von Eisen(III)-perchlorat-L?sungen. Helv Chim Acta, 45: 212-224
[35]  Flemming H C, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol, 8: 623-633
[36]  Fratesi S E, Lynch F L, Kirkland B L, et al. 2004. Effects of SEM preparation techniques on the appearance of bacteria and biofilms in the Carter Sandstone. J Sediment Res, 74: 858
[37]  Gole M J. 1980. Mineralogy and petrology of very-low-metamorphic grade Archaean banded iron-formations, Weld Range, Western Australia. Am Mineral, 65: 8-25
[38]  Hallbeck L, Pedersen K. 1990. Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea. J Gen Microbiol, 136: 1675-1680
[39]  Hallberg R, Ferris F G. 2004. Biomineralization by Gallionella. Geomicrobiol J, 21: 325-330
[40]  Hedrich S, Schl?mann M, Johnson D B. 2011. The iron-oxidizing proteobacteria. Microbiology, 157: 1551-1564
[41]  Hofmann B A, Farmer J D, von Blanckenburg F, et al. 2008. Subsurface filamentous fabrics: An evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology. Astrobiology, 8: 87-117
[42]  Holm N G. 1987. Possible biological origin of banded iron formations from hydrothermal solutions. Origins Life Evol B, 17: 229-250
[43]  Holm N G. 1989. The 13C/12C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations. Chem Geol, 77: 41-45
[44]  Kappler A, Newman D K. 2004. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotropic bacteria. Geochim Cosmochim Acta, 68: 1217-1226
[45]  Kappler A, Pasquero C, Konhauser K O, et al. 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 33: 865-868
[46]  Kaufman A J, Hayes J M, and Klein C. 1990. Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. Geochim Cosmochim Acta, 54: 3461-3473
[47]  Konhauser K O. 1998. Diversity of bacterial iron mineralization. Earth-Sci Rev, 43: 91-121
[48]  Konhauser K O. 2009. Introduction to Geomicrobiology. Malden: Wiley-Blackwell. 340-345
[49]  Konhauser K O, Hamade T, Raiswell R, et al. 2002. Could bacteria have formed the Precambrian banded iron formations? Geology, 30: 1079-1082
[50]  Konhauser K O, Kappler A, Roden E E. 2011. Iron in microbial metabolisms. Elements, 7: 89-93
[51]  Li Y L, Konhauser K O, Cole D R, et al. 2011. Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology, 39: 707-710
[52]  Li Y L, Konhauser K O, Kappler A, et al. 2013. Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations. Earth Planet Sci Lett, 361: 229-237
[53]  Murad E, Johnson J H. 1987. Iron oxides and oxyhydroxides. In: Long G, ed. M?ssbauser Spectroscopy Applied to Inorganic Chemistry. New York: Plenum. 507-582

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133