全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

细菌群落在神农架大九湖泥炭藓与表层沉积物的垂向变化及其生态意义

, PP. 1244-1252

Keywords: 大九湖,泥炭藓,泥炭沉积物,细菌群落,甲烷循环

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为了探讨泥炭藓共生细菌和泥炭表层沉积物细菌群落的垂向变化以及它们在湿地生态系统中的作用,对大九湖泥炭湿地泥炭藓植株的不同部位和下伏泥炭沉积物进行了分层采样.利用克隆文库和荧光定量PCR技术对样品中的细菌进行了定性和定量分析.结果表明,尽管细菌的16SrRNA基因拷贝数在同一个数量级(108个拷贝/克样品),并以变形菌和酸杆菌占优势,但细菌群落组成由泥炭藓上部至下部再到泥炭沉积物不同深度存在显著的空间变化.泥炭藓上部以蓝细菌(Cyanobacteria)和a变形菌门(alpha-Proteobacteria)为主,中部则以酸杆菌门(Acidobateria)为主,泥炭藓下部和最表层泥炭以a变形菌门和酸杆菌门为主,地表以下的泥炭样品以酸杆菌门占优势.细菌组成的这种空间分布规律与细菌的生态功能密切相关.泥炭藓上部的蓝细菌通过光合作用与泥炭藓共生.酸杆菌门的细菌一方面能适应泥炭湿地低pH的环境条件,另一方面还在泥炭藓植株的降解及泥炭的形成中发挥重要作用,并可能参与泥炭湿地酸性条件的形成.在泥炭藓不同部位均发现了甲基胞囊菌科(Methylocystaceae)的克隆,暗示甲烷氧化不仅局限于泥炭藓死亡的透明细胞中,而是在泥炭藓的整个植株中均可能存在着活跃的甲烷氧化过程.这一工作对深刻理解和定量研究泥炭地的微生物地球化学过程,特别是甲烷通量以及甲烷循环具有重要意义.

References

[1]  Kraigher B, Stres B, Hacin J, et al. 2006. Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh. Soil Biol Biochem, 38: 2762-2771
[2]  Muyzer G, Smalla K. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Anton Leeuw, 73: 127-141
[3]  Nadkarni M A, Martin F E, Jacques N A, et al. 2002. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 148: 257-266
[4]  Pankratov T A, Serkebaeva Y M, Kulichevskaya I S, et al. 2008. Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. ISME J, 2: 551-560
[5]  Peterse F, Nicol G W, Schouten S, et al. 2010. Influence of soil pH on the abundance and distribution of core and intact polar lipid-derived branched GDGTs in soil. Org Geochem, 41: 1171-1175
[6]  Radajewski S, Webster G, Reay D S, et al. 2002. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology, 148: 2331-2342
[7]  Raghoebarsing A A, Smolders A J, Schmid M C, et al. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature, 436: 1153-1156
[8]  Weijers J W, Panoto E, van Bleijswijk J, et al. 2009. Constraints on the biological sources of the orphan branched tetraether membrane lipids. Geomicrobiology J, 26: 402-414
[9]  Xie S, Evershed R P, Huang X, et al. 2013. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China. Geology, 41: 827-830
[10]  Xie S, Pancost R D, Yin H, et al. 2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 434: 494-497
[11]  包文美, 曹建国. 2001. 泥炭藓及其孢子萌发和有性生殖. 生物学通报, 36: 8-9
[12]  戴雅婷, 侯向阳, 王慧,等. 2012. 鄂尔多斯沙地油蒿根际土壤微生物数量的季节动态. 干旱区资源与环境, 10: 103-107
[13]  何报寅, 张穗, 蔡述明. 2003. 近2600年神农架大九湖泥炭的气候变化记录. 海洋地质与第四纪地质, 23: 109-115
[14]  Lee S H, Ka J O, Cho J C. 2008. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol Lett, 285: 263-269
[15]  M?nnist? M K, Tiirola M, H?ggblom M M. 2007. Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol, 59: 452-465
[16]  Morales S E, Mouser P J, Ward N, et al. 2006. Comparison of bacterial communities in New England Sphagnum bogs using terminal restriction fragment length polymorphism (T-RFLP). Microbial Ecol, 52: 34-44
[17]  Roberts J K, Ray P M, Wade-Jardetzky N, et al. 1980. Estimation of cytoplasmic and vacuolar pH in higher plant cells by 31P NMR. Nature, 283: 870-872
[18]  Sait M, Davis K E, Janssen P H. 2006. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbl, 72: 1852-1857
[19]  Schopf J W, Kudryavtsev A B, Agresti D G, et al. 2002. Laser-Raman imagery of Earth''s earliest fossils. Nature, 416: 73-76
[20]  Shen J, Zhang L, Guo J, et al. 2010. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Appl Soil Ecol, 46: 119-124
[21]  Wang M, Ahrné S, Jeppsson B, et al. 2005. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol, 54: 219-231
[22]  刘乔, 王红梅, 龚林锋, 等. 2013. 湖北神农架大九湖泥炭地泥炭藓共生细菌群落分析. 第四纪研究, 33: 79-87
[23]  石敏, 喻建新, 顾延生, 等. 2008. 神农架大九湖晚更新世与全新世之交的气候变化——来自孢粉的信息. 地质科技情报, 27: 24-28
[24]  汪良驹, 刘友良. 1998. 植物细胞中的液泡及其生理功能. 植物生理学通讯, 34: 394-400
[25]  谢树成, 黄咸雨, 杨欢, 等. 2013. 示踪全球环境变化的微生物代用指标. 第四纪研究, 33: 1-18
[26]  杨丽阳, 吴莹, 黄俊华, 等. 2009. 大九湖泥炭柱样的木质素特征. 地球化学, 38: 133-139
[27]  袁红朝, 秦红灵, 刘守龙, 等. 2011. 长期施肥对红壤性水稻土细菌群落结构和数量的影响. 中国农业科学, 44: 4610-4617
[28]  朱诚, 马春梅, 张文卿, 等. 2006. 神农架大九湖15.753 kaB.P. 以来的孢粉记录和环境演变. 第四纪研究, 26: 814-826
[29]  Augustin J, Merbach W, Schmidt W, et al. 1996. Effect of changing temperature and water table on trace gas emission from minerotrophic mires. J Appl Bot-Angew Bot, 70: 45-51
[30]  Ausec L, Kraigher B, Mandic-Mulec I. 2009. Differences in the activity and bacterial community structure of drained grassland and forest peat soils. Soil Biol Biochem, 41: 1874-1881
[31]  Belova S E, Baani M, Suzina N E, et al. 2011. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep, 3: 36-46
[32]  Bossio D A, Scow K M, Gunapala N, et al. 1998. Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecol, 36: 1-12
[33]  Bridgham S D, Pastor J, Janssens J A, et al. 1996. Multiple limiting gradients in peatlands: A call for a new paradigm. Wetlands, 16: 45-65
[34]  Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scand J Stat, 11: 265-270
[35]  Dedysh S N, Pankratov T A, Belova S E, et al. 2006. Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol, 72: 2110-2117
[36]  Falkowski P G, Fenchel T, Delong E F. 2008. The microbial engines that drive Earth''s biogeochemical cycles. Science, 320: 1034-1039
[37]  Fierer N, Jackson R B. 2006. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA, 103: 626-631
[38]  Gibbon B C, Kropf D L. 1993. Intracellular pH and its regulation in Pelvetia zygotes. Dev Biol, 157: 259-268
[39]  Gorham E. 1991. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol Appl, 1: 182-195
[40]  Gorham E. 1995. The biogeochemistry of northern peatlands and its possible responses to global warming. In: Woodwell G M, Mackenzie F T, eds. Biotic Feedback in the Global Climatic System. New York: Oxford University Press. 169-187
[41]  Gürtler V, Stanisich V A. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology, 142: 3-16
[42]  Heck Jr K L, van Belle G, Simberloff D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology, 56: 1459-1461
[43]  Hoffmann T, Horz H, Kemnitz D, et al. 2002. Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines. Syst Appl Microbiol, 25: 267-274
[44]  Huang X, Wang C, Zhang J, et al. 2011. Comparison of free lipid compositions between roots and leaves of plants in the Dajiuhu Peatland, central China. Geochem J, 45: 365-373
[45]  Hughes J B, Hellmann J J, Ricketts T H, et al. 2001. Counting the uncountable: Statistical approaches to estimating microbial diversity. Appl Environ Microbol, 67: 4399-4406
[46]  Humayoun S B, Bano N, Hollibaugh J T. 2003. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbol, 69: 1030-1042
[47]  Jackson C R, Liew K C, Yule C M. 2009. Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microb Ecol, 57: 402-412
[48]  Janssen P H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA genes. Appl Environ Microbol, 72: 1719-1728
[49]  Kim J, Sparovek G, Longo R M, et al. 2007. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol Biochem, 39: 684-690
[50]  Kip N, Fritz C, Langelaan E S, et al. 2012. Methanotrophic activity and diversity in different Sphagnum magellanicum dominated habitats in the southernmost peat bogs of Patagonia. Biogeosciences, 9: 47-55

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133