Annous B A, Becker L A, Bayles D O, et al. 1997. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol, 63: 3887-3894
[9]
Costello E K, Schmidt S K. 2006. Microbial diversity in alpine tundra wet meadow soil: Novel Chloroflexi from a cold, water-saturated environment. Environ Microbiol, 8: 1471-1486
[10]
Dasgupta S, Fang J, Brake S S, et al. 2012. Biosynthesis of sterols and wax esters by Euglena of acid mine drainage biofilms: Implications for eukaryotic evolution and the early Earth. Chem Geol, 306-307: 139-145
[11]
De Boever E, Birgel D, Thiel V, et al. 2009. The formation of giant tubular concretions triggered by anaerobic oxidation of methane as revealed by archaeal molecular fossils(Lower Eocene, Varna, Bulgaria). Paleogeogr Paleoclimatol Paleoecol, 280: 23-36
[12]
Dodd R S, Poveda M M. 2003. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochem Syst Ecol, 31: 1257-1270
[13]
Edgcomb M R, Sirimanne S, Wilkinson B J, et al. 2000. Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes. BBA-Biomembranes, 1463: 31-42
[14]
Eglinton G, Hamilton R J. 1967. Leaf epicuticular waxes. Science, 156: 1322-1335
[15]
Ficken K J, Li B, Swain D L, et al. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem, 31: 745-749
[16]
Fierer N, Jackson R B. 2006. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA, 103: 626-631
[17]
Frosteg?rd A, B??th E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils, 22: 59-65
[18]
Gao L, Nie J, Clemens S, et al. 2012. The importance of solar insolation on the temperature variations for the past 110 kyr on the Chinese Loess Plateau. Paleogeogr Paleoclimatol Paleoecol, 317-318: 128-133
[19]
Ghosh P, Garzione C N, Eiler J M. 2006. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 311: 511-515
[20]
Peterse F, van der Meer M T J, Schouten S, et al. 2009. Assessment of soil n-alkane δD and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction. Biogeosciences, 6: 2799-2807
[21]
Peterse F, Prins M A, Beets C J, et al. 2011. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation. Earth Planet Sci Lett, 301: 256-264
[22]
Peterse F, van der Meer J, Schouten S, et al. 2012. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta, 96: 215-229
[23]
Prahl F G, Wakeham S G. 1987. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature, 330: 367-369
[24]
Rampen S W, Willmott V, Kim J H, et al. 2012. Long chain 1, 13- and 1, 15-diols as a potential proxy for palaeotemperature reconstruction. Geochim Cosmochim Acta, 84: 204-216
[25]
Schouten S, Hopmans E C, Schefuss E, et al. 2002. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett, 204: 265-274
[26]
Schouten S, Klimiuk A M, van der Meer M T J, et al. 2009. Occurrence and carbon metabolism of green non sulfur-like bacteria in Californian and Nevada Hot Spring microbial mats as revealed by wax ester lipid analysis. Geomicrobiol J, 26: 179-188
[27]
Hren M T, Pagani M, Erwin D M, et al. 2010. Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada. Geology, 38: 7-10
[28]
Hua N P, Kanekiyo A, Fujikura K, et al. 2007. Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp. nov., moderately halophilic bacteria isolated from a deep-sea methane cold seep. Int J Syst Evol Micr, 7: 1243-1249
[29]
Huang X, Meyers P A, Jia C, et al. 2013. Paleotemperature variability in central China during the last 13 ka recorded by a novel microbial lipid proxy in the Dajiuhu peat deposit. Holocene, 23: 1123-1129
[30]
Ishige T, Tani A, Sakai Y, et al. 2003. Wax ester production by bacteria. Curr Opin Microbiol, 6: 244-250
[31]
Janssen P H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. App Environ Microbiol, 72: 1719-1728
[32]
Kaneda T. 1991. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol Rev, 55: 288-302
[33]
Kim J H, Schouten S, Hopmans E C, et al. 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim Cosmochim Acta, 72: 1154-1173
[34]
Lauber C L, Hamady M, Knight R, et al. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol, 75: 5111-5120
[35]
Li D, Zhao M, Tian J, et al. 2013. Comparison and implication of TEX86 and UK-37'' temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea. Paleogeogr Paleoclimatol Paleoecol, 376: 213-223
[36]
Liu W, Wang H, Zhang C L, et al. Distribution of glycerol dialkyl glycerol tetraether lipids along an altitudinal transect on Mt. Xiangpi, NE Qinghai-Tibetan Plateau, China. Org Geochem, 2013, 57: 76-83
[37]
Liu Z H, Pagani M, Zinniker D, et al. 2009. Global cooling during the Eocene-Oligocene climate transition. Science, 323: 1187-1190
[38]
Mudge S M, Norris C E. 1997. Lipid biomarkers in the Conwy Estuary (North Wales, U.K.): A comparison between fatty alcohols and sterols. Mar Chem, 57: 61-84
[39]
Mudge S M, Belanger S E, Nielsen A M. 2008. Fatty alcohols: Anthropogenic and natural occurrence in the environment. Cambridge: UK Royal Soc Chem
[40]
Müller P J, Kirst G, Ruhland G, et al. 1998. Calibration of the alkenone paleotemperature index UK-37'' based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochim Cosmochim Acta, 62: 1757-1772
[41]
Pearson A, Ingalls A E. 2013. Assessing the use of archaeal lipids as marine environmental proxies. Annu Rev Earth Planet Sci, 41: 359-384
[42]
Sun Q, Chu G, Liu M, et al. 2011. Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal. J Geophys Res, 116: G01008, doi: 10.1029/2010JG001365
[43]
Suutari M, Laakso S. 1992. Unsaturated and branched-chain fatty-acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. BBA-Lipids Lipid Metab, 1126: 119-124
[44]
Suutari M, Laakso S. 1994. Microbial fatty acids and thermal adaptation. Crit Rev Microbiol, 20: 285-328
[45]
Thiel V, Peckmann J, Seifert R, et al. 1999. Highly isotopically depleted isoprenoids: Molecular markers for ancient methane venting. Geochim Cosmochim Acta, 63: 3959-3966
[46]
Tierney J E, Russell J M, Eggermont H, et al. 2010. Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochim Cosmochim Acta, 74: 4902-4918
[47]
Treignier C, Derenne S, Saliot A. 2006. Terrestrial and marine n-alcohol inputs and degradation processes relating to a sudden turbidity current in the Zaire canyon. Org Geochem, 37: 1170-1184
[48]
van der Meer M T J, Klatt C G, Wood J, et al. 2010. Cultivation and genomic, nutritional and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats. J Bacteriol, 192: 3033-3042
[49]
Weijers J W H, Schouten S, van den Donker J C, et al. 2007. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta, 71: 703-713
[50]
Sinninghe Damsté J S, Ossebaar J, Schouten S, et al. 2008. Altitudinal shifts in the branched tetraether lipid distribution in soil from Mt. Kilimanjaro(Tanzania): Implications for the MBT/CBT continental palaeothermometer. Org Geochem, 39: 1072-1076
[51]
Volkman J K, Barrett S M, Blackburn S I. 1999. Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 n-alcohols and C28-C32 n-alkyl diols in freshwater environments. Org Geochem, 30: 307-318
[52]
Wada M, Fukunaga N, Sasaki S. 1987. Effect of growth temperature on phospholipid and fatty-acid compositions in a psychrotrophic bacterium, Pseudomonas sp. Strain E-3. Plant Cell Physiol, 28: 1209-1217
[53]
Waltermann M, Hinz A, Robenek H, et al. 2005. Mechanism of lipid-body formation in prokaryotes: How bacteria fatten up. Mol Microbiol, 55: 750-763
[54]
Willecke K, Pardee A B. 1971. Fatty acid-requiring mutant of Bacillus subtilis defective in branched chain a-keto acid dehydrogenase. J Biol Chem, 246: 5264-5272
[55]
Xie S C, Chen F H, Wang Z Y, et al. 2003. Lipid distributions in loess-paleosol sequences from northwest China. Org Geochem, 34: 1071-1079
[56]
Yang H, Ma X, Li Q, et al. 2009. Distributions of phospholipid and glycolipid fatty acids in two strains of different functional Erythrobacter sp. isolated from South China Sea. Front Earth Sci, 3: 91-99
[57]
Yang H, Ding W, He G, et al. 2010. Archaeal and bacterial tetraether membrane lipids in soils of varied altitudes in Mt. Jianfengling in South China. J Earth Sci, 21: 277-280
[58]
Zelles L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol Fert Soils, 29: 111-129
[59]
Zhang Z, Zhao M, Eglinton G, et al. 2006. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr. Quaternary Sci Rev, 25: 575-594Zhu K, Bayles D O, Xiong A M, et al. 2005. Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase. Microbiology-SGM, 151: 615-623