全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海南尖峰岭不同海拔土壤中微生物脂肪酸和脂肪醇分布特征及对古海拔、古温度重建的启示

, PP. 1229-1243

Keywords: 反异构脂肪醇,微生物,蜡脂,古温度,古海拔

Full-Text   Cite this paper   Add to My Lib

Abstract:

?海南尖峰岭不同海拔造成的年平均温度差异为检验和建立基于微生物类脂物的环境替代指标提供了良好条件.尖峰岭土壤中含有种类丰富的微生物脂肪酸和脂肪醇化合物,包括异构/反异构脂肪酸(em/aC12:0~em/aC19:0),10-甲基十六酸、异构和反异构脂肪醇(em/aC13~emC26)、10-甲基十六醇和不饱和脂肪醇,指示了尖峰岭土壤中强烈的微生物活动.土壤中异构和反异构脂肪醇,不饱和脂肪醇主要以结合态,即蜡脂形式存在,只有经过皂化才能释放出支链脂肪醇.反异构十五酸/异构十五酸与海拔成正相关关系,表明温度降低能够引起反异构十五酸相对比例的增加.与脂肪酸不同的是,反异构十五醇/异构十五醇,反异构十五醇/正构十五醇随海拔升高却逐渐降低,表现出随温度降低减小的趋势.同样,单不饱和十八醇/十八醇比值随海拔升高而逐渐减小,与微生物脂肪酸不饱和度随温度降低而增加的规律相反.此外,植物叶蜡长链正构脂肪醇(C22~C30)的平均碳链长度ACL,正构脂肪醇(C14~C31)的碳优势指数CPI与海拔(或年平均温度)呈显著相关关系,证明了其应用于古气候重建的潜力.因此,微生物脂肪酸和脂肪醇、高等植物叶蜡都能够灵敏的响应环境温度的变化,可以为重建古温度和古海拔提供新的途径.

References

[1]  李婧婧, 黄俊华, 谢树成. 2011. 植物蜡质及其与环境的关系. 生态学报, 31: 565-574
[2]  孙青, 储国强, 刘国祥, 等. 2010. 湖泊体系中长链烯酮研究进展. 地球学报, 31: 485-494
[3]  谢树成, 黄咸雨, 杨欢, 等. 2013. 示踪全球环境变化的微生物代用指标. 第四纪研究, 33: 1-18
[4]  熊永强, 吴丰昌, 王铜山, 等. 2009. 滇池湖泊沉积物中甘油二烷基甘油四醚脂的组成特征. 沉积学报, 27: 1191-1198
[5]  曾庆波, 丁美华. 1985. 海南岛尖峰岭热带植被类型垂直分布与水热状况. 植物生态学与地植物学丛刊, 9: 297-305
[6]  周浩达, 胡建芳,明荔莉, 等. 2011. 150年来若尔盖泥炭沉积支链四醚膜类脂及古环境重建. 科学通报, 56: 1741-1748
[7]  周璋, 李意德, 林明献, 等. 2009. 海南岛尖峰岭热带山地雨林区26年的热量因子变化特征. 生态学杂志, 28: 1006-1012
[8]  Annous B A, Becker L A, Bayles D O, et al. 1997. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol, 63: 3887-3894
[9]  Costello E K, Schmidt S K. 2006. Microbial diversity in alpine tundra wet meadow soil: Novel Chloroflexi from a cold, water-saturated environment. Environ Microbiol, 8: 1471-1486
[10]  Dasgupta S, Fang J, Brake S S, et al. 2012. Biosynthesis of sterols and wax esters by Euglena of acid mine drainage biofilms: Implications for eukaryotic evolution and the early Earth. Chem Geol, 306-307: 139-145
[11]  De Boever E, Birgel D, Thiel V, et al. 2009. The formation of giant tubular concretions triggered by anaerobic oxidation of methane as revealed by archaeal molecular fossils(Lower Eocene, Varna, Bulgaria). Paleogeogr Paleoclimatol Paleoecol, 280: 23-36
[12]  Dodd R S, Poveda M M. 2003. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochem Syst Ecol, 31: 1257-1270
[13]  Edgcomb M R, Sirimanne S, Wilkinson B J, et al. 2000. Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes. BBA-Biomembranes, 1463: 31-42
[14]  Eglinton G, Hamilton R J. 1967. Leaf epicuticular waxes. Science, 156: 1322-1335
[15]  Ficken K J, Li B, Swain D L, et al. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem, 31: 745-749
[16]  Fierer N, Jackson R B. 2006. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA, 103: 626-631
[17]  Frosteg?rd A, B??th E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils, 22: 59-65
[18]  Gao L, Nie J, Clemens S, et al. 2012. The importance of solar insolation on the temperature variations for the past 110 kyr on the Chinese Loess Plateau. Paleogeogr Paleoclimatol Paleoecol, 317-318: 128-133
[19]  Ghosh P, Garzione C N, Eiler J M. 2006. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 311: 511-515
[20]  Peterse F, van der Meer M T J, Schouten S, et al. 2009. Assessment of soil n-alkane δD and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction. Biogeosciences, 6: 2799-2807
[21]  Peterse F, Prins M A, Beets C J, et al. 2011. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation. Earth Planet Sci Lett, 301: 256-264
[22]  Peterse F, van der Meer J, Schouten S, et al. 2012. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta, 96: 215-229
[23]  Prahl F G, Wakeham S G. 1987. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature, 330: 367-369
[24]  Rampen S W, Willmott V, Kim J H, et al. 2012. Long chain 1, 13- and 1, 15-diols as a potential proxy for palaeotemperature reconstruction. Geochim Cosmochim Acta, 84: 204-216
[25]  Schouten S, Hopmans E C, Schefuss E, et al. 2002. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett, 204: 265-274
[26]  Schouten S, Klimiuk A M, van der Meer M T J, et al. 2009. Occurrence and carbon metabolism of green non sulfur-like bacteria in Californian and Nevada Hot Spring microbial mats as revealed by wax ester lipid analysis. Geomicrobiol J, 26: 179-188
[27]  Hren M T, Pagani M, Erwin D M, et al. 2010. Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada. Geology, 38: 7-10
[28]  Hua N P, Kanekiyo A, Fujikura K, et al. 2007. Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp. nov., moderately halophilic bacteria isolated from a deep-sea methane cold seep. Int J Syst Evol Micr, 7: 1243-1249
[29]  Huang X, Meyers P A, Jia C, et al. 2013. Paleotemperature variability in central China during the last 13 ka recorded by a novel microbial lipid proxy in the Dajiuhu peat deposit. Holocene, 23: 1123-1129
[30]  Ishige T, Tani A, Sakai Y, et al. 2003. Wax ester production by bacteria. Curr Opin Microbiol, 6: 244-250
[31]  Janssen P H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. App Environ Microbiol, 72: 1719-1728
[32]  Kaneda T. 1991. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol Rev, 55: 288-302
[33]  Kim J H, Schouten S, Hopmans E C, et al. 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim Cosmochim Acta, 72: 1154-1173
[34]  Lauber C L, Hamady M, Knight R, et al. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol, 75: 5111-5120
[35]  Li D, Zhao M, Tian J, et al. 2013. Comparison and implication of TEX86 and UK-37'' temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea. Paleogeogr Paleoclimatol Paleoecol, 376: 213-223
[36]  Liu W, Wang H, Zhang C L, et al. Distribution of glycerol dialkyl glycerol tetraether lipids along an altitudinal transect on Mt. Xiangpi, NE Qinghai-Tibetan Plateau, China. Org Geochem, 2013, 57: 76-83
[37]  Liu Z H, Pagani M, Zinniker D, et al. 2009. Global cooling during the Eocene-Oligocene climate transition. Science, 323: 1187-1190
[38]  Mudge S M, Norris C E. 1997. Lipid biomarkers in the Conwy Estuary (North Wales, U.K.): A comparison between fatty alcohols and sterols. Mar Chem, 57: 61-84
[39]  Mudge S M, Belanger S E, Nielsen A M. 2008. Fatty alcohols: Anthropogenic and natural occurrence in the environment. Cambridge: UK Royal Soc Chem
[40]  Müller P J, Kirst G, Ruhland G, et al. 1998. Calibration of the alkenone paleotemperature index UK-37'' based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochim Cosmochim Acta, 62: 1757-1772
[41]  Pearson A, Ingalls A E. 2013. Assessing the use of archaeal lipids as marine environmental proxies. Annu Rev Earth Planet Sci, 41: 359-384
[42]  Sun Q, Chu G, Liu M, et al. 2011. Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal. J Geophys Res, 116: G01008, doi: 10.1029/2010JG001365
[43]  Suutari M, Laakso S. 1992. Unsaturated and branched-chain fatty-acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. BBA-Lipids Lipid Metab, 1126: 119-124
[44]  Suutari M, Laakso S. 1994. Microbial fatty acids and thermal adaptation. Crit Rev Microbiol, 20: 285-328
[45]  Thiel V, Peckmann J, Seifert R, et al. 1999. Highly isotopically depleted isoprenoids: Molecular markers for ancient methane venting. Geochim Cosmochim Acta, 63: 3959-3966
[46]  Tierney J E, Russell J M, Eggermont H, et al. 2010. Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochim Cosmochim Acta, 74: 4902-4918
[47]  Treignier C, Derenne S, Saliot A. 2006. Terrestrial and marine n-alcohol inputs and degradation processes relating to a sudden turbidity current in the Zaire canyon. Org Geochem, 37: 1170-1184
[48]  van der Meer M T J, Klatt C G, Wood J, et al. 2010. Cultivation and genomic, nutritional and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats. J Bacteriol, 192: 3033-3042
[49]  Weijers J W H, Schouten S, van den Donker J C, et al. 2007. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta, 71: 703-713
[50]  Sinninghe Damsté J S, Ossebaar J, Schouten S, et al. 2008. Altitudinal shifts in the branched tetraether lipid distribution in soil from Mt. Kilimanjaro(Tanzania): Implications for the MBT/CBT continental palaeothermometer. Org Geochem, 39: 1072-1076
[51]  Volkman J K, Barrett S M, Blackburn S I. 1999. Eustigmatophyte microalgae are potential sources of C29 sterols, C22-C28 n-alcohols and C28-C32 n-alkyl diols in freshwater environments. Org Geochem, 30: 307-318
[52]  Wada M, Fukunaga N, Sasaki S. 1987. Effect of growth temperature on phospholipid and fatty-acid compositions in a psychrotrophic bacterium, Pseudomonas sp. Strain E-3. Plant Cell Physiol, 28: 1209-1217
[53]  Waltermann M, Hinz A, Robenek H, et al. 2005. Mechanism of lipid-body formation in prokaryotes: How bacteria fatten up. Mol Microbiol, 55: 750-763
[54]  Willecke K, Pardee A B. 1971. Fatty acid-requiring mutant of Bacillus subtilis defective in branched chain a-keto acid dehydrogenase. J Biol Chem, 246: 5264-5272
[55]  Xie S C, Chen F H, Wang Z Y, et al. 2003. Lipid distributions in loess-paleosol sequences from northwest China. Org Geochem, 34: 1071-1079
[56]  Yang H, Ma X, Li Q, et al. 2009. Distributions of phospholipid and glycolipid fatty acids in two strains of different functional Erythrobacter sp. isolated from South China Sea. Front Earth Sci, 3: 91-99
[57]  Yang H, Ding W, He G, et al. 2010. Archaeal and bacterial tetraether membrane lipids in soils of varied altitudes in Mt. Jianfengling in South China. J Earth Sci, 21: 277-280
[58]  Zelles L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol Fert Soils, 29: 111-129
[59]  Zhang Z, Zhao M, Eglinton G, et al. 2006. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr. Quaternary Sci Rev, 25: 575-594Zhu K, Bayles D O, Xiong A M, et al. 2005. Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase. Microbiology-SGM, 151: 615-623

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133