全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二叠纪-三叠纪之交重大地质突变期微生物对环境的作用

, PP. 1193-1205

Keywords: 微生物功能群,二叠纪,三叠纪大灭绝

Full-Text   Cite this paper   Add to My Lib

Abstract:

?生物与环境之间是相互作用和协同演化的.目前在生物对环境变化的响应方面已取得了许多重要的认识,而在生物对环境作用方面的认识还非常薄弱.本文以二叠纪-三叠纪之交这一生物与环境的重大突变期为例,探讨了微生物对环境的作用并指出了下一步的重点突破方向.类脂物生物标志化合物、C-N-S稳定同位素地球化学和矿物学的研究表明,硫酸盐还原微生物功能群、H2S的厌氧氧化微生物功能群、产甲烷微生物功能群、甲烷的好氧氧化微生物功能群、反硝化微生物功能群和固氮微生物功能群在二叠纪-三叠纪之交显著繁盛.不同微生物功能群既可以加剧环境的恶化,也可以改善环境,正是这些多方面的微生物作用才使得地球环境不至于向一个方向演变,而是处于一个能够自我调节的状态.

References

[1]  Algeo T J, Shen Y, Zhang T, et al. 2008. Association of 34S-depleted pyrite layers with negative carbonate δ13C excursions at the Permian/Triassic boundary: Evidence for upwelling of sulfidic deep-ocean watermasses. Geochem Geophys Geosyst, 9: Q04025
[2]  Algeo T, Henderson C M, Ellwood B, et al. 2012. Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. Geol Soc Am Bull, 124: 1424-1448
[3]  Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297: 1137-1143
[4]  Baud A, Richoz S, Pruss S. 2007. The lower Triassic anachronistic carbonate facies in space and time. Glob Planet Change, 55: 81-89
[5]  Beaumont V, Robert F. 1999. Nitrogen isotoe ratios of kerogens in Precambrian cherts: A record of the evolution of atmosphere chemistry? Precambrian Res, 96: 63-82
[6]  Grasby S E, Beauchamp B, Embry A, et al. 2012. Recurrent Early Triassic ocean anoxia. Geology, 41: 175-178
[7]  Grice K, Cao C Q, Love G D. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307: 706-709
[8]  Gruber N, Galloway J N. 2008. An Earth-system perspective of the global nitrogen cycle. Nature, 451: 293-296
[9]  Kasting J F. 2005. Methane and climate during the Precambrian era. Precambrian Res, 137: 119-129
[10]  Khalil M A K. 1999. Non-CO2 greenhouse gases in the atmosphere. Annu Rev Energ Env, 24: 645-661
[11]  King G M, Roslev P, Skovgaard H. 1990. Distribution and rate of methane oxidation in sediments of the Florida Everglades. Appl Environ Microbiol, 56: 2902-2911
[12]  Liao W, Wang Y B, Kershaw S, et al. 2010. Shallow-marine dysoxia across the Permian-Triassic boundary: Evidence from pyrite framboids in the microbialite in South China. Sediment Geol, 232: 77-83
[13]  Lipp J S, Morono Y, Inagaki F, et al. 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454: 991-994
[14]  Lovelock J E, 1972. Gaia as seen through the atmosphere. Atmos Environ, 6: 452-453
[15]  Mumma M J, Villanueva G L, Novak R E, et al. 2009. Strong release of methane on Mars in Northern Summer 2003. Science, 323: 1041-1045
[16]  Nabbefeld B, Grice K, Twitchett R J, et al. 2010. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth Planet Sci Lett, 291: 84-96
[17]  Naqvi S W A, Yoshinari T, Jayakumar D A, et al. 1998. Budgetary and biogeochemical implications of N2O isotope signatures in the Arabian Sea. Nature, 394: 462-464
[18]  Navarro-Gonzalez R, McKay C P, Mvondo D N. 2001. A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature, 412: 61-64
[19]  Newton R J, Pevitt E L, Wignall P B, et al. 2004. Large shifts in the isotopic composition of seawater sulphate across the Permian-Triassic boundary in northern Italy. Earth Planet Sci Lett, 218: 331-345
[20]  Orphan V J, Hinrichs K U, Ussler III W, et al. 2001. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol, 67: 1922-1934
[21]  Parkes R J, Cragg B A, Bale S J, et al. 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371: 410-413
[22]  Peckmann J, Thiel V, Michaelis W, et al. 1999. Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): Microbially induced authigenic carbonates. Int J Earth Sci, 88: 60-75
[23]  Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400: 525-531
[24]  Ueno Y, Yamada K, Yoshida N, et al. 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature, 440: 516-519
[25]  Valentine D L. 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: Areview. Antonie van Leeuwenhoek, 81: 271-282
[26]  van Breugel Y, Schouten S, Paetzel M, et al. 2005. The impact of recycling of organic carbon on the stable carbon isotopic composition of dissolved inorganic carbon in a stratified marine system (Kyllaren fjord, Norway). Org Geochem, 36: 1163-1173
[27]  Wacey D, McLoughlin N, Whitehouse M J, et al. 2010. Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. Geology, 38: 1115-1118
[28]  Ward P D, Botha J, Buick R, et al. 2005. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science, 307: 709-715
[29]  Webby B D, Paris F, Droser M L, et al. 2004. The Great Ordovician Biodiversification Event. New York: Columbia University Press. 1-487
[30]  Whitman W B, Coleman D C, Wiebe W J. 1998. Prokaryotes: The unseen majority. Proc Natl Acad Sci USA, 95: 6578-6583
[31]  Wignall P B, Newton R, Brookfield M E. 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Paleogeogr Paleoclimatol Paleoecol, 216: 183-188
[32]  Wignall P B, Bond D P G, Kuwahara K, et al. 2010. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Glob Planet Change, 71: 109-123
[33]  Wilkin R T, Barnes H L. 1997. Formation processes of framboidal pyrite. Geochim Cosmochim Acta, 61: 323-339
[34]  Zehr J P, Waterbury J B, Turner P J, et al. 2001. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature, 412: 635-638
[35]  Zehr J P, Bench S R, Carter B J, et al. 2008. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxyenic photosystem II. Science, 322: 1110-1112
[36]  Zerkle A L, Kamyshny Jr A, Kump L R, et al. 2010. Sulfur cycling in a stratified euxinic lake with moderately high sulfate: Constraints from quadruple S isotopes. Geochim Cosmochim Acta, 74: 4953-4970
[37]  黄咸雨, 焦丹, 鲁立强, 等. 2007. 二叠纪-三叠纪之交环境的不稳定性和生物危机的多阶段性: 浙江长兴微生物分子化石记录. 中国科学D辑: 地球科学, 37: 629-635
[38]  罗根明. 2012. 二叠纪-三叠纪之交的微生物地质过程和C-N-S生物地球化学循环. 武汉: 中国地质大学博士学位论文, 1-20
[39]  孙枢, 王成善. 2008. Gaia理论与地球系统科学. 地质学报, 82: 1-8
[40]  王永标, 童金南, 周修高, 等. 2005. 华南二叠纪末大灭绝后的钙质微生物岩及古环境意义. 科学通报, 50: 552-558
[41]  谢树成, 龚一鸣, 童金南, 等. 2006. 从古生物学到地球生物学的跨越. 科学通报, 51: 2327-2336
[42]  谢树成, 殷鸿福, 史小颖. 2011. 地球生物学: 生命与地球环境的相互作用和协同演化. 北京: 科学出版社
[43]  谢树成, 杨欢, 罗根明, 等. 2012. 地质微生物功能群: 生命与环境相互作用的重要突破口. 科学通报, 57: 3-22
[44]  殷鸿福, 谢树成, 秦建中, 等. 2008. 对地球生物学、生物地质学和地球生物相的一些探讨. 中国科学D辑: 地球科学, 38: 1473-1480
[45]  张元动, 詹仁斌, 樊隽轩, 等. 2010. 奥陶纪生物大辐射研究的关键科学问题. 中国科学: 地球科学, 39: 129-1438
[46]  Algeo T J, Scheckler S E, Maynard J B. 2001. Effects of early vascular land plants on weathering processes and global chemical fluxes during the Middle and Late Devonian. In: Gensel P, Edwards D, eds. Plants Invade the Land: Evolutionary and Environmental Perspectives. Columbia: Columbia University Press. 213-236
[47]  Algeo T J, Hannigan R, Rowe H, et al. 2007. Sequencing events across the Permian-Triassic boundary, Guryul Ravine(Kashmir, India). Paleogeogr Paleoclimatol Paleoecol, 252: 328-346
[48]  Blankenship R. 2001. Molecular evidence for the evolution of photosynthesis. Trends Plant Sci, 6: 4-6
[49]  Blumenberg M, Mollenhauer G, Zabel M, et al. 2010. Decoupling of bio- and geohopanoids in sediments of the Benguela Upwelling System (BUS). Org Geochem, 41: 1119-1129
[50]  Borgonie G, Garcia-Moyano A, Litthauer D, et al. 2011. Nematoda from the terrestrial deep subsurface of South Africa. Nature, 474: 79-82
[51]  Brocks J J, Love G D, Summons R E, et al. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437: 866-870
[52]  Buick R. 2007. Did the Proterozoic ‘Canfield Ocean'' cause a laughing gas greenhouse? Geobiology, 5: 97-100
[53]  Burhan R Y P, Trendel J M, Adam P, et al. 2002. Fossil bacterial ecosystem at methane seeps: Origin of organic matter from Be''eri sulfur deposit, Israel. Geochim Cosmochim Acta, 66: 4085-4101
[54]  Canfield D E. 1998. A new model for Proterozoic ocean chemistry. Nature, 396: 450-453
[55]  Canfield D E, Kristensen E, Thamdrup B. 2004. Aquatic Geomicrobiology. California: Elsevier Academic Press. 1-640
[56]  Canfield D E, Stewart F J, Thamdrup B, et al. 2010a. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science, 330: 1375-1378
[57]  Canfield D E, Glazer A N, Falkowski P G. 2010b. The evolution and future of Earth''s nitrogen cycle. Science, 330: 192-196
[58]  Cao C Q, Love G D, Hays L E, et al. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett, 281: 188-201
[59]  Capone D G, Zehr J P, Paerl H W, et al. 1997. Trichodesmium, a globally significant marine cyanobacterium. Science, 276: 1221-1229
[60]  Chen Z Q, Benton MJ, 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci, 5: 375-383
[61]  Cvejic J H, Bodrossy L, Kovacs K L, et al. 2000. Bacterial triterpenoids of the hopane series from the methanotrophic bacteria Methylocaldum spp.: Phylogenetic implications and first evidence for an unsaturated aminobacteriohopanepolyol. Fems Microbiol Lett, 182: 361-365
[62]  Dannenberg S, Kroder M, Dilling W. 1992. Oxidation of H2, organic-compounds and inorganic sulfur-compounds coupled to reduction of O2 or nitrate by sulphate-reducing bacteria. Arch Microbiol, 158: 93-99
[63]  D''Hondt S, J?rgensen B B, Miller D J, et al. 2004. Distributions of microbial activities in deep subseafloor sediments. Science, 306: 2216-2221
[64]  Erwin D H. 2006. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. New York: Princeton University Press. 320
[65]  Falkowski P G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequencestration of CO2 in the ocean. Nature, 387: 272-275
[66]  Fareleira P, Santos B S, António C, et al. 2003. Response of a strict anaerobe to oxygen: Survival strategies in Desulfovibriogigas. Microbiology, 149: 1513-1522
[67]  Farrimond P, Talbot H M, Watson D F, et al. 2004. Methylhopanoids: Molecular indicators of ancient bacteria and a petroleum correlation tool. Geochim Cosmochim Acta, 68: 3873-3882
[68]  Garvin J, Buick R, Anbar A D, et al. 2009. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science, 323: 1045-1048
[69]  Gold T. 1992. The deep, hot biosphere. Proc Natl Acad Sci USA, 89: 6045-6049
[70]  Gorjan P, Kaiho K, Kakegawa T, et al. 2007. Paleoredox, biotic and sulfur-isotope changes associated with the End-Permian mass extinction in the western Tethys. Chem Geol, 244: 483-492
[71]  Haltia T, Brown K, Tegoni M, et al. 2003. Crystal structure of nitrous oxide reductase from paracoccus denitrificans at 1.6 ? resolution. Biochem J, 369: 77-88
[72]  Hanson R S, Hanson T E. 1996. Methanotrophic Bacteria. Microbiol Rev, 60: 439-471
[73]  Harper D A T. 2006. The Ordovician biodiversification: Setting an agenda for marine life. Paleogeogr Paleoclimatol Paleoecol, 232: 148-166
[74]  Hays L E, Beatty T, Henderson C M, et al. 2007. Evidence for photic zone euxinia through the End-Permian mass extinction in the Panthalassic Ocean (Peace River Basin, Western Canada). Palaeoworld, 16: 39-50
[75]  Hays L E, Grice K, Foster C B, et al. 2012. Biomarker and isotopic trends in a Permian-Triassic sedimentary section at Kap Stosch, Greenland. Org Geochem, 43: 67-82
[76]  Hinrichs K U, Hayes J M, Sylva S P, et al. 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398: 802-805
[77]  Hoehler T M, Alperin M J, Albert D B. 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim Cosmochim Acta, 62: 1745-1756
[78]  H?nisch B, Ridgwell A, Schmidt D N, et al. 2012. The geological record of ocean acidification. Science, 335: 1058-1063
[79]  Horita J, Zimmermann H, Holland H D. 2002. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim Cosmochim Acta, 66: 3733-3756
[80]  Hsü K J, McKenzie J A. 1985. A “Strangelove” ocean in the earliest Tertiary. In: Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. AGU Geophys Monogr, 32: 487-492
[81]  Jia C L, Huang J H, Kershaw S, et al. 2012. Microbial response to limited nutrients in shallow water immediately after the End-Permian mass extinction. Geobiology, 10: 60-71
[82]  Joachimski M M, Lai X L, Shen S Z, et al. 2012. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology, 40: 195-198
[83]  J?rgensen B B. 1982. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature, 296: 643-645
[84]  J?rgensen B B, Kasten S. 2006. Sulfur cycling and methane oxidation. In: Schulz H D, Zabel M, eds. Marine Geochemistry. London: Springer. 271-309
[85]  Kaiho K, Kajiwara Y, Nakano T, et al. 2001. End Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, 29: 815-818
[86]  Kaiho K, Kajiwara Y, Chen Z Q, et al. 2006. A sulfur isotope event at the end of the Permian. Chem Geol, 235: 33-47
[87]  Knoll A H, Bambach R K, Payne J L, et al. 2007. Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett, 256: 295-313
[88]  Konhauser K. 2007. Introduction to Geomicrobiology. Malden: Blackwell Publishing. 1-405
[89]  Kump L R, Pavlov A, Arthur M A. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during interval of oceanic anoxia. Geology, 33: 397-400
[90]  Lavik G, Stührmann T, Brüchert V, et al. 2009. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature, 457: 581-584
[91]  Lehrmann D J, Payne J L, Felix S V, et al. 2003. Permian-Triassic boundary sections from shallow-marine carbonate platforms of the NanpanjiangBasin, South China: Implications for oceanic conditions associated with the End-Permian extinction and its aftermath. Palaios, 18: 138-152
[92]  Lemos R S, Gomes C M, Santana M. 2001. The “strict” anaerobe Desulfovibriogigas contains a membrane-bound oxygen respiratory chain. Febs Lett, 496: 40-43
[93]  Lenton T M, Schellnhuber H J, Szathmary E. 2004. Climbing the co-evolution ladder. Nature, 431: 913
[94]  Li F, Yan J, Algeo T, et al. 2013. Paleoceanographic conditions following the End-Permian mass extinction recorded by giant ooids (Moyang, South China). Glob Planet Change, 105: 102-120
[95]  Lowenstein T K, Hardie L A, Timofeeff M N, et al. 2003. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology, 31: 857-860
[96]  Lowenstein T K, Timofeeff M N, Kovalevych V M, et al. 2005. The major-ion composition of Permian seawater. Geochim Cosmochim Acta, 69: 1701-1719
[97]  Luo G M, Kump L R, Wang Y B, et al. 2010. Isotopic evidence for an anomalously low oceanic sulphate concentration following End-Permian mass extinction. Earth Planet Sci Lett, 300: 101-111
[98]  Luo G M, Wang Y B, Algeo T J, et al. 2011. Enhanced nitrogen fixation in the immediate aftermath of the latest Permian marine mass extinction. Geology, 39: 647-650
[99]  Luo G M, Wang Y B, Grice K, et al. 2013. Microbial-algal community changes during the latest Permian ecological crisis: Evidence from lipid biomarkers at Cili, South China. Glob Planet Change, 105: 36-51
[100]  Moisander P H, Beinart R A, Hewson I, et al. 2010. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science, 327: 1512-1514
[101]  Pedersen K. 1993. The deep subterranean biosphere. Earth-Sci Rev, 34: 243-260
[102]  Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide: Biomarkers and isotopes in the environment and human history. Cambridge: Cambridge University Press. 704
[103]  Rabus A, Hansen T A, Widdel F. 2006. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, et al. eds. The Prokaryotes. New York: Springer Science+Business Media. 2: 659-768
[104]  Riccardi A L, Arthur M A, Kump L R. 2006. Sulfur isotopic evidence for chemocline upward excursions during the End-Permian mass extinction. Geochim Cosmochim Acta, 70: 5740-5752
[105]  Romano, C, Goudemand, N, Vennemann, T W, et al. 2012. Climatic and biotic upheavals following the End-Permian mass extinction. Nat Geosci, 6: 57-60
[106]  Saito M A, Sigman D M, Morel F M M. 2003. The bioinorganic chemistry of the ancient ocean: The co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary? Inorg Chim Acta, 356: 308-318
[107]  Saito R, Oba M, Kaiho K, et al. 2013. Ether lipids from the Lower and Middle Triassic at Qingyan, GuizhouProvince, Southern China. Org Geochem, 58: 27-42
[108]  Schoepfer S D, Henderson C M, Garrison G H, et al. 2012. Cessation of a productive coastal upwelling system in the PanthalassicOcean at the Permian-Triassic Boundary. Paleogeogr Paleoclimatol Paleoecol, 313-314: 181-188
[109]  Scholten J C M, van Bodegom P M, Vogelaar J, et al. 2002. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment. Fems Microbiol Ecol, 42: 375-385
[110]  Severin I, Stal L J. 2008. Light dependency of nitrogen fixation in a coastal cyanobacterial mat. ISME J, 2: 1077-1088
[111]  Severin I, Stal L J. 2010. Diazotrophic microbial mats. In: Seckbach J, Oren A, eds. Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems, Cellular Origin, Life in Extreme Habitats and Astrobiology. New York: Springer Science+Business Media. 14: 321-339
[112]  Shen S Z, Crowley J L, Wang Y, et al. 2011. Calibrating the End-Permian mass extinction. Science, 334: 1367-1372
[113]  Shen W, Lin Y, Xu L, et al. 2007. Pyrite framboids in the Permian-Triassic boundary section at Meishan, China: Evidence for dysoxic deposition. Paleogeogr Paleoclimatol Paleoecol, 253: 323-331
[114]  Shen Y A, Buick R, Canfield D E. 2001. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410: 77-81
[115]  Sinninghe Damsté J S, K?ster J. 1998. A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event. Earth Planet Sci Lett, 158: 165-173
[116]  Sohm J A, Webb E A, Capone D G. 2011. Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol, 9: 499-508
[117]  Song H J, Wignall P, Tong J N, et al. 2012. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with End-Permian extinction and recovery. Earth Planet Sci Lett, 253-254: 12-21
[118]  Song H Y, Tong J, Algeo T J, et al. 2014. Concurrent changes in the marine sulfur and carbon cycles during the Early Triassic: Evidence for ocean stagnation and subsequent overturn. Geochim Cosmochim Acta, in press
[119]  Summons R E, Powell T G. 1987. Identification of aryl isoprenoids in source rocks and crude oils: Biological markers for the green sulphur bacteria. Geochim Cosmochim Acta, 51: 557-566
[120]  Sun Y D, Joachimski M M, Wignall P B, et al. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338: 366-370
[121]  Thauer R K, Stackebrandt E, Hamilton W A. 2006. Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria. In: Barton L L, Hamilton W A, eds. Sulphate-reducing Bacteria: Environmental and Engineered Systems. Cambridge: CambridgeUniversity Press. 1-37
[122]  Xie S C, Pancost R D, Yin H F, et al. 2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 434: 494-497
[123]  Yin H F, Feng Q L, Lai X L, et al. 2007. The protracted Permo-Triassic crisis and the multi-episode mass extinction around the Permian-Triassic boundary. Glob Planet Change, 55: 1-20
[124]  Yin H F, Xie S C, Luo G M, et al. 2012. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan. Earth-Sci Rev, 115: 163-172
[125]  Zehr J P, Mellon M, Braun S, et al. 1995. Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Appl Environ Microbiol, 61: 2527-2532

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133