Algeo T J, Shen Y, Zhang T, et al. 2008. Association of 34S-depleted pyrite layers with negative carbonate δ13C excursions at the Permian/Triassic boundary: Evidence for upwelling of sulfidic deep-ocean watermasses. Geochem Geophys Geosyst, 9: Q04025
[2]
Algeo T, Henderson C M, Ellwood B, et al. 2012. Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. Geol Soc Am Bull, 124: 1424-1448
[3]
Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297: 1137-1143
[4]
Baud A, Richoz S, Pruss S. 2007. The lower Triassic anachronistic carbonate facies in space and time. Glob Planet Change, 55: 81-89
[5]
Beaumont V, Robert F. 1999. Nitrogen isotoe ratios of kerogens in Precambrian cherts: A record of the evolution of atmosphere chemistry? Precambrian Res, 96: 63-82
[6]
Grasby S E, Beauchamp B, Embry A, et al. 2012. Recurrent Early Triassic ocean anoxia. Geology, 41: 175-178
[7]
Grice K, Cao C Q, Love G D. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307: 706-709
[8]
Gruber N, Galloway J N. 2008. An Earth-system perspective of the global nitrogen cycle. Nature, 451: 293-296
[9]
Kasting J F. 2005. Methane and climate during the Precambrian era. Precambrian Res, 137: 119-129
[10]
Khalil M A K. 1999. Non-CO2 greenhouse gases in the atmosphere. Annu Rev Energ Env, 24: 645-661
[11]
King G M, Roslev P, Skovgaard H. 1990. Distribution and rate of methane oxidation in sediments of the Florida Everglades. Appl Environ Microbiol, 56: 2902-2911
[12]
Liao W, Wang Y B, Kershaw S, et al. 2010. Shallow-marine dysoxia across the Permian-Triassic boundary: Evidence from pyrite framboids in the microbialite in South China. Sediment Geol, 232: 77-83
[13]
Lipp J S, Morono Y, Inagaki F, et al. 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454: 991-994
[14]
Lovelock J E, 1972. Gaia as seen through the atmosphere. Atmos Environ, 6: 452-453
[15]
Mumma M J, Villanueva G L, Novak R E, et al. 2009. Strong release of methane on Mars in Northern Summer 2003. Science, 323: 1041-1045
[16]
Nabbefeld B, Grice K, Twitchett R J, et al. 2010. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth Planet Sci Lett, 291: 84-96
[17]
Naqvi S W A, Yoshinari T, Jayakumar D A, et al. 1998. Budgetary and biogeochemical implications of N2O isotope signatures in the Arabian Sea. Nature, 394: 462-464
[18]
Navarro-Gonzalez R, McKay C P, Mvondo D N. 2001. A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature, 412: 61-64
[19]
Newton R J, Pevitt E L, Wignall P B, et al. 2004. Large shifts in the isotopic composition of seawater sulphate across the Permian-Triassic boundary in northern Italy. Earth Planet Sci Lett, 218: 331-345
[20]
Orphan V J, Hinrichs K U, Ussler III W, et al. 2001. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol, 67: 1922-1934
[21]
Parkes R J, Cragg B A, Bale S J, et al. 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371: 410-413
[22]
Peckmann J, Thiel V, Michaelis W, et al. 1999. Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): Microbially induced authigenic carbonates. Int J Earth Sci, 88: 60-75
[23]
Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400: 525-531
[24]
Ueno Y, Yamada K, Yoshida N, et al. 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature, 440: 516-519
[25]
Valentine D L. 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: Areview. Antonie van Leeuwenhoek, 81: 271-282
[26]
van Breugel Y, Schouten S, Paetzel M, et al. 2005. The impact of recycling of organic carbon on the stable carbon isotopic composition of dissolved inorganic carbon in a stratified marine system (Kyllaren fjord, Norway). Org Geochem, 36: 1163-1173
[27]
Wacey D, McLoughlin N, Whitehouse M J, et al. 2010. Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. Geology, 38: 1115-1118
[28]
Ward P D, Botha J, Buick R, et al. 2005. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science, 307: 709-715
[29]
Webby B D, Paris F, Droser M L, et al. 2004. The Great Ordovician Biodiversification Event. New York: Columbia University Press. 1-487
[30]
Whitman W B, Coleman D C, Wiebe W J. 1998. Prokaryotes: The unseen majority. Proc Natl Acad Sci USA, 95: 6578-6583
[31]
Wignall P B, Newton R, Brookfield M E. 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Paleogeogr Paleoclimatol Paleoecol, 216: 183-188
[32]
Wignall P B, Bond D P G, Kuwahara K, et al. 2010. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Glob Planet Change, 71: 109-123
[33]
Wilkin R T, Barnes H L. 1997. Formation processes of framboidal pyrite. Geochim Cosmochim Acta, 61: 323-339
[34]
Zehr J P, Waterbury J B, Turner P J, et al. 2001. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature, 412: 635-638
[35]
Zehr J P, Bench S R, Carter B J, et al. 2008. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxyenic photosystem II. Science, 322: 1110-1112
[36]
Zerkle A L, Kamyshny Jr A, Kump L R, et al. 2010. Sulfur cycling in a stratified euxinic lake with moderately high sulfate: Constraints from quadruple S isotopes. Geochim Cosmochim Acta, 74: 4953-4970
Algeo T J, Scheckler S E, Maynard J B. 2001. Effects of early vascular land plants on weathering processes and global chemical fluxes during the Middle and Late Devonian. In: Gensel P, Edwards D, eds. Plants Invade the Land: Evolutionary and Environmental Perspectives. Columbia: Columbia University Press. 213-236
[47]
Algeo T J, Hannigan R, Rowe H, et al. 2007. Sequencing events across the Permian-Triassic boundary, Guryul Ravine(Kashmir, India). Paleogeogr Paleoclimatol Paleoecol, 252: 328-346
[48]
Blankenship R. 2001. Molecular evidence for the evolution of photosynthesis. Trends Plant Sci, 6: 4-6
[49]
Blumenberg M, Mollenhauer G, Zabel M, et al. 2010. Decoupling of bio- and geohopanoids in sediments of the Benguela Upwelling System (BUS). Org Geochem, 41: 1119-1129
[50]
Borgonie G, Garcia-Moyano A, Litthauer D, et al. 2011. Nematoda from the terrestrial deep subsurface of South Africa. Nature, 474: 79-82
[51]
Brocks J J, Love G D, Summons R E, et al. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437: 866-870
[52]
Buick R. 2007. Did the Proterozoic ‘Canfield Ocean'' cause a laughing gas greenhouse? Geobiology, 5: 97-100
[53]
Burhan R Y P, Trendel J M, Adam P, et al. 2002. Fossil bacterial ecosystem at methane seeps: Origin of organic matter from Be''eri sulfur deposit, Israel. Geochim Cosmochim Acta, 66: 4085-4101
[54]
Canfield D E. 1998. A new model for Proterozoic ocean chemistry. Nature, 396: 450-453
[55]
Canfield D E, Kristensen E, Thamdrup B. 2004. Aquatic Geomicrobiology. California: Elsevier Academic Press. 1-640
[56]
Canfield D E, Stewart F J, Thamdrup B, et al. 2010a. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science, 330: 1375-1378
[57]
Canfield D E, Glazer A N, Falkowski P G. 2010b. The evolution and future of Earth''s nitrogen cycle. Science, 330: 192-196
[58]
Cao C Q, Love G D, Hays L E, et al. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett, 281: 188-201
[59]
Capone D G, Zehr J P, Paerl H W, et al. 1997. Trichodesmium, a globally significant marine cyanobacterium. Science, 276: 1221-1229
[60]
Chen Z Q, Benton MJ, 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci, 5: 375-383
[61]
Cvejic J H, Bodrossy L, Kovacs K L, et al. 2000. Bacterial triterpenoids of the hopane series from the methanotrophic bacteria Methylocaldum spp.: Phylogenetic implications and first evidence for an unsaturated aminobacteriohopanepolyol. Fems Microbiol Lett, 182: 361-365
[62]
Dannenberg S, Kroder M, Dilling W. 1992. Oxidation of H2, organic-compounds and inorganic sulfur-compounds coupled to reduction of O2 or nitrate by sulphate-reducing bacteria. Arch Microbiol, 158: 93-99
[63]
D''Hondt S, J?rgensen B B, Miller D J, et al. 2004. Distributions of microbial activities in deep subseafloor sediments. Science, 306: 2216-2221
[64]
Erwin D H. 2006. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. New York: Princeton University Press. 320
[65]
Falkowski P G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequencestration of CO2 in the ocean. Nature, 387: 272-275
[66]
Fareleira P, Santos B S, António C, et al. 2003. Response of a strict anaerobe to oxygen: Survival strategies in Desulfovibriogigas. Microbiology, 149: 1513-1522
[67]
Farrimond P, Talbot H M, Watson D F, et al. 2004. Methylhopanoids: Molecular indicators of ancient bacteria and a petroleum correlation tool. Geochim Cosmochim Acta, 68: 3873-3882
[68]
Garvin J, Buick R, Anbar A D, et al. 2009. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science, 323: 1045-1048
[69]
Gold T. 1992. The deep, hot biosphere. Proc Natl Acad Sci USA, 89: 6045-6049
[70]
Gorjan P, Kaiho K, Kakegawa T, et al. 2007. Paleoredox, biotic and sulfur-isotope changes associated with the End-Permian mass extinction in the western Tethys. Chem Geol, 244: 483-492
[71]
Haltia T, Brown K, Tegoni M, et al. 2003. Crystal structure of nitrous oxide reductase from paracoccus denitrificans at 1.6 ? resolution. Biochem J, 369: 77-88
[72]
Hanson R S, Hanson T E. 1996. Methanotrophic Bacteria. Microbiol Rev, 60: 439-471
[73]
Harper D A T. 2006. The Ordovician biodiversification: Setting an agenda for marine life. Paleogeogr Paleoclimatol Paleoecol, 232: 148-166
[74]
Hays L E, Beatty T, Henderson C M, et al. 2007. Evidence for photic zone euxinia through the End-Permian mass extinction in the Panthalassic Ocean (Peace River Basin, Western Canada). Palaeoworld, 16: 39-50
[75]
Hays L E, Grice K, Foster C B, et al. 2012. Biomarker and isotopic trends in a Permian-Triassic sedimentary section at Kap Stosch, Greenland. Org Geochem, 43: 67-82
[76]
Hinrichs K U, Hayes J M, Sylva S P, et al. 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398: 802-805
[77]
Hoehler T M, Alperin M J, Albert D B. 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim Cosmochim Acta, 62: 1745-1756
[78]
H?nisch B, Ridgwell A, Schmidt D N, et al. 2012. The geological record of ocean acidification. Science, 335: 1058-1063
[79]
Horita J, Zimmermann H, Holland H D. 2002. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim Cosmochim Acta, 66: 3733-3756
[80]
Hsü K J, McKenzie J A. 1985. A “Strangelove” ocean in the earliest Tertiary. In: Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. AGU Geophys Monogr, 32: 487-492
[81]
Jia C L, Huang J H, Kershaw S, et al. 2012. Microbial response to limited nutrients in shallow water immediately after the End-Permian mass extinction. Geobiology, 10: 60-71
[82]
Joachimski M M, Lai X L, Shen S Z, et al. 2012. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology, 40: 195-198
[83]
J?rgensen B B. 1982. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature, 296: 643-645
[84]
J?rgensen B B, Kasten S. 2006. Sulfur cycling and methane oxidation. In: Schulz H D, Zabel M, eds. Marine Geochemistry. London: Springer. 271-309
[85]
Kaiho K, Kajiwara Y, Nakano T, et al. 2001. End Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, 29: 815-818
[86]
Kaiho K, Kajiwara Y, Chen Z Q, et al. 2006. A sulfur isotope event at the end of the Permian. Chem Geol, 235: 33-47
[87]
Knoll A H, Bambach R K, Payne J L, et al. 2007. Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett, 256: 295-313
[88]
Konhauser K. 2007. Introduction to Geomicrobiology. Malden: Blackwell Publishing. 1-405
[89]
Kump L R, Pavlov A, Arthur M A. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during interval of oceanic anoxia. Geology, 33: 397-400
[90]
Lavik G, Stührmann T, Brüchert V, et al. 2009. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature, 457: 581-584
[91]
Lehrmann D J, Payne J L, Felix S V, et al. 2003. Permian-Triassic boundary sections from shallow-marine carbonate platforms of the NanpanjiangBasin, South China: Implications for oceanic conditions associated with the End-Permian extinction and its aftermath. Palaios, 18: 138-152
[92]
Lemos R S, Gomes C M, Santana M. 2001. The “strict” anaerobe Desulfovibriogigas contains a membrane-bound oxygen respiratory chain. Febs Lett, 496: 40-43
[93]
Lenton T M, Schellnhuber H J, Szathmary E. 2004. Climbing the co-evolution ladder. Nature, 431: 913
[94]
Li F, Yan J, Algeo T, et al. 2013. Paleoceanographic conditions following the End-Permian mass extinction recorded by giant ooids (Moyang, South China). Glob Planet Change, 105: 102-120
[95]
Lowenstein T K, Hardie L A, Timofeeff M N, et al. 2003. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology, 31: 857-860
[96]
Lowenstein T K, Timofeeff M N, Kovalevych V M, et al. 2005. The major-ion composition of Permian seawater. Geochim Cosmochim Acta, 69: 1701-1719
[97]
Luo G M, Kump L R, Wang Y B, et al. 2010. Isotopic evidence for an anomalously low oceanic sulphate concentration following End-Permian mass extinction. Earth Planet Sci Lett, 300: 101-111
[98]
Luo G M, Wang Y B, Algeo T J, et al. 2011. Enhanced nitrogen fixation in the immediate aftermath of the latest Permian marine mass extinction. Geology, 39: 647-650
[99]
Luo G M, Wang Y B, Grice K, et al. 2013. Microbial-algal community changes during the latest Permian ecological crisis: Evidence from lipid biomarkers at Cili, South China. Glob Planet Change, 105: 36-51
[100]
Moisander P H, Beinart R A, Hewson I, et al. 2010. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science, 327: 1512-1514
[101]
Pedersen K. 1993. The deep subterranean biosphere. Earth-Sci Rev, 34: 243-260
[102]
Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide: Biomarkers and isotopes in the environment and human history. Cambridge: Cambridge University Press. 704
[103]
Rabus A, Hansen T A, Widdel F. 2006. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, et al. eds. The Prokaryotes. New York: Springer Science+Business Media. 2: 659-768
[104]
Riccardi A L, Arthur M A, Kump L R. 2006. Sulfur isotopic evidence for chemocline upward excursions during the End-Permian mass extinction. Geochim Cosmochim Acta, 70: 5740-5752
[105]
Romano, C, Goudemand, N, Vennemann, T W, et al. 2012. Climatic and biotic upheavals following the End-Permian mass extinction. Nat Geosci, 6: 57-60
[106]
Saito M A, Sigman D M, Morel F M M. 2003. The bioinorganic chemistry of the ancient ocean: The co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary? Inorg Chim Acta, 356: 308-318
[107]
Saito R, Oba M, Kaiho K, et al. 2013. Ether lipids from the Lower and Middle Triassic at Qingyan, GuizhouProvince, Southern China. Org Geochem, 58: 27-42
[108]
Schoepfer S D, Henderson C M, Garrison G H, et al. 2012. Cessation of a productive coastal upwelling system in the PanthalassicOcean at the Permian-Triassic Boundary. Paleogeogr Paleoclimatol Paleoecol, 313-314: 181-188
[109]
Scholten J C M, van Bodegom P M, Vogelaar J, et al. 2002. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment. Fems Microbiol Ecol, 42: 375-385
[110]
Severin I, Stal L J. 2008. Light dependency of nitrogen fixation in a coastal cyanobacterial mat. ISME J, 2: 1077-1088
[111]
Severin I, Stal L J. 2010. Diazotrophic microbial mats. In: Seckbach J, Oren A, eds. Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems, Cellular Origin, Life in Extreme Habitats and Astrobiology. New York: Springer Science+Business Media. 14: 321-339
[112]
Shen S Z, Crowley J L, Wang Y, et al. 2011. Calibrating the End-Permian mass extinction. Science, 334: 1367-1372
[113]
Shen W, Lin Y, Xu L, et al. 2007. Pyrite framboids in the Permian-Triassic boundary section at Meishan, China: Evidence for dysoxic deposition. Paleogeogr Paleoclimatol Paleoecol, 253: 323-331
[114]
Shen Y A, Buick R, Canfield D E. 2001. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410: 77-81
[115]
Sinninghe Damsté J S, K?ster J. 1998. A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event. Earth Planet Sci Lett, 158: 165-173
[116]
Sohm J A, Webb E A, Capone D G. 2011. Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol, 9: 499-508
[117]
Song H J, Wignall P, Tong J N, et al. 2012. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with End-Permian extinction and recovery. Earth Planet Sci Lett, 253-254: 12-21
[118]
Song H Y, Tong J, Algeo T J, et al. 2014. Concurrent changes in the marine sulfur and carbon cycles during the Early Triassic: Evidence for ocean stagnation and subsequent overturn. Geochim Cosmochim Acta, in press
[119]
Summons R E, Powell T G. 1987. Identification of aryl isoprenoids in source rocks and crude oils: Biological markers for the green sulphur bacteria. Geochim Cosmochim Acta, 51: 557-566
[120]
Sun Y D, Joachimski M M, Wignall P B, et al. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338: 366-370
[121]
Thauer R K, Stackebrandt E, Hamilton W A. 2006. Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria. In: Barton L L, Hamilton W A, eds. Sulphate-reducing Bacteria: Environmental and Engineered Systems. Cambridge: CambridgeUniversity Press. 1-37
[122]
Xie S C, Pancost R D, Yin H F, et al. 2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 434: 494-497
[123]
Yin H F, Feng Q L, Lai X L, et al. 2007. The protracted Permo-Triassic crisis and the multi-episode mass extinction around the Permian-Triassic boundary. Glob Planet Change, 55: 1-20
[124]
Yin H F, Xie S C, Luo G M, et al. 2012. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan. Earth-Sci Rev, 115: 163-172
[125]
Zehr J P, Mellon M, Braun S, et al. 1995. Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Appl Environ Microbiol, 61: 2527-2532