全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

广西杨堤剖面上泥盆统弗拉阶-法门阶之交磷质微球粒的发现及其地球生物学意义

, PP. 1171-1184

Keywords: 微球粒,牙形动物,耳石,富营养化,泥盆纪,F-F华南

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用醋酸酸解法处理广西桂林杨堤剖面上泥盆统弗拉阶-法门阶(F-F)之交的样品,获得了大量保存完好的磷质微球粒.其直径为150mm左右,球状、扁球状或椭球状,球体外表面光滑,并发育脐状浅凹,球体为实心,内部由浅色的磷灰石和深色的有机质相间分布形成同心环带结构.所有磷质微球粒与牙形刺共同保存,而磷质微球粒的丰度明显低于同层位的牙形刺.显微激光拉曼微区分析表明:磷质微球粒的外壳和内核的拉曼光谱特征分别与牙形刺Palmatolepissp.的齿片和齿台十分类似.此外,磷质微球粒的富集与藻类生物繁盛在时间上基本一致,而滞后于海水营养盐激增.基于磷质微球粒与牙形刺在丰度的相关性、成分的相似性以及与鱼类耳石在形态和结构特征方面的相似性,本文认为磷质微球粒可能是牙形动物的“耳石”,其形成可能与海水富营养化有关.晚泥盆世陆源输入的增加、海底热液活动以及缺氧的底层海水上涌等活动可能导致了海水营养盐富集,并由此诱发菌藻类生物的繁盛,从而可能刺激了牙形动物分泌磷质微球粒—牙形动物“耳石”.本文以磷质微球粒为纽带揭示了生物-环境之间的耦合关系,为晚泥盆世F-F之交的生物灭绝成因提供了新的证据.

References

[1]  Joachimski M M, Ostertag-Henning C, Pancost R D, et al. 2001. Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian-Famennian boundary (Kowala-Holy Cross Mountains/Poland). Chem Geol,175: 109-131
[2]  Johnson J G, Klapper G, Sandberg C A. 1985. Devonian eustatic fluctuations in Euramerica. Geol Soc Am Bull,96: 567-587
[3]  Kingsmill S. 1993. Ear stones speak volumes to fish researchers. Science,260: 1233-1234
[4]  Leuteritz K, Pietzner H, Vahl J, et al. 1972. Aufbau, zusammensetzung und entstehung von Calciumphosphat-Sph?ren in pal?ozoischen Kalken. Geol Palaeontol,6: 111-137
[5]  Lowenstam H A. 1972. Phosphatic hard tissues of marine invertebrates: Their nature and mechanical function, and some fossil implications. Chem Geol,9: 153-166
[6]  Ma X P, Bai S L. 2002. Biological, depositional, microspherule, and geochemical records of the Frasnian/Famennian boundary beds, South China. Paleogeogr Paleoclimatol Paleoecol,181: 325-346
[7]  Marshall C P, Edwards H G, Jehlicka J. 2010. Understanding the application of Raman spectroscopy to the detection of traces of life. Astrobiology,10: 229-243
[8]  Martin J H, Fitzwater S E, Gordon R M. 1990. Iron deficiency limits phytoplankton growth in Antarctic waters. Glob Biogeochem Cycle,4: 5-12
[9]  Martin R E. 1995. Cyclic and secular variation in microfossil biomineralization: Clues to the biogeochemical evolution of Phanerozoic oceans. Glob Planet Change,11: 1-23
[10]  Martin R E. 1996. Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass, and diversity of the marine biosphere. Palaios,11: 209-219
[11]  McGhee G R. 1996. The Late Devonian Mass Extinction. New York: Columbia University Press. 303
[12]  McLaren D J. 1970. Presidential address: Time, life, and boundaries. J Paleontol,44: 801-815
[13]  Meekan M, Dodson J, Good S, et al. 1998. Otolith and fish size relationships, measurement error, and size-selective mortality during the early life of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci,55: 1663-1673
[14]  Murphy A E, Sageman B B, Hollander D J. 2000. Eutrophication by decoupling of the marine biogeochemical cycles of C, N, and P: A mechanism for the late Devonian mass extinction. Geology,28: 427-430
[15]  Paris F, Girard C, Feist R, et al. 1996. Chitinozoan bio-event in the Frasnian-Famennian boundary beds at La Serre (Montagne Noire, Southern France). Paleogeogr Paleoclimatol Paleoecol,121: 131-145
[16]  Pasteris J D, Wopenka B. 2003. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology,3: 727-738
[17]  Racki G. 1998. Frasnian-Famennian biotic crisis: Undervalued tectonic control? Paleogeogr Paleoclimatol Paleoecol,141: 177-198
[18]  Racki G. 2012. The Alvarez impact theory of mass extinction; limits to its applicability and the “great expectations syndrome”. Acta Palaeontol Polon,57: 681-702
[19]  Racki G, Racka M, Matyja H, et al. 2002. The Frasnian/Famennian boundary interval in the South Polish-Moravian shelf basins: Integrated event-stratigraphical approach. Paleogeogr Paleoclimatol Paleoecol,181: 251-297
[20]  Raup V M, Sepkoski J J J. 1982. Mass Extinctions in the fossil record. Science,215: 1501-1503
[21]  Ruttenberg K C. 1993. Reassessment of the oceanic residence time of phosphorus. Chem Geol,107: 405-409
[22]  Sandberg C A, Morrow J R, Ziegler W. 2002. Late Devonian sea-level changes, catastrophic events, and mass extinctions. Geol Soc Am Spec Pap,356: 473-487
[23]  Schopf J W, Kudryavtsev A B, Agresti D G, et al. 2002. Laser-Raman imagery of Earth''s earliest fossils. Nature,416: 73-76
[24]  Schultze H-P. 1990. A new acanthodian from the Pennsylvanian of Utah, U.S.A., and the distribution of otoliths in gnathostomes. J Vert Paleontol,10: 49-58
[25]  白顺良. 1998. 泥盆纪弗拉阶-法门阶事件的化学-生物地层学研究. 北京大学学报(自然科学版),34: 363-369
[26]  杜远生, 龚一鸣, 曾雄伟, 等. 2008. 广西泥盆系弗拉斯-法门期之交的事件沉积及其对小行星碰撞引起的大海啸的启示. 中国科学D辑: 地球科学,38: 1504-1513
[27]  龚一鸣, 李保华, 司远兰, 等. 2002a. 晚泥盆世赤潮与生物集群绝灭. 科学通报,47: 554-560
[28]  龚一鸣, 李保华, 吴诒. 2002b. 广西弗拉阶-法门阶之交碳同位素与分子地层对比研究. 地学前缘,9: 151-160
[29]  龚一鸣, 徐冉, 汤中道, 等. 2004. 广西上泥盆统轨道旋回地层与牙形石带的数字定年. 中国科学D辑: 地球科学,34: 635-643
[30]  龚一鸣, 徐冉, 汤中道, 等. 2005. 晚泥盆世F-F之交菌藻微生物繁荣与集群绝灭的关系:来自碳同位素和分子化石的启示. 中国科学D辑: 地球科学,35: 140-148
[31]  黄程, 徐冉, 龚一鸣. 2012. 微球粒:跨越微观和宇观世界的重要信息载体. 地球科学—中国地质大学学报,37: 97-116
[32]  张宁, 夏文臣. 1998. 华南晚古生代硅质岩时空分布及再扩张残留海槽演化. 地球科学—中国地质大学学报,23: 480-486
[33]  曾剑威, 徐冉, 龚一鸣. 2011. 泥盆纪F-F之交海底热液活动与海洋酸化: 来自稀土元素的证据. 中国科学: 地球科学,41: 1089-1099
[34]  曾允孚, 张锦泉, 刘文均, 等. 1993. 中国南方泥盆纪岩相古地理与成矿作用. 北京: 地质出版社. 123
[35]  Aldridge R J, Briggs D E G, Smith M P, et al. 1993. The anatomy of conodonts. Philos Trans R Soc B-Biol Sci,340: 405-421
[36]  Algeo T J, Berner R A, Maynard J B, et al. 1995. Late Devonian oceanic anoxic events and biotic crises: "Rooted" in the evolution of vascular land plants? Geol Soc Am Today,5: 64-66
[37]  Algeo T J, Scheckler S E. 1998. Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Philos Trans R Soc B-Biol Sci,353: 113-130
[38]  Bai S L, Bai Z Q, Ma X P, et al. 1994. Devonian Events and Biostratigraphy of South China. Beijing: Peking University Press. 303
[39]  Beaugrand G, Brander K M, Alistair Lindley J, et al. 2003. Plankton effect on cod recruitment in the North Sea. Nature,426: 661-664
[40]  Bischoff G C O. 1973. On the nature of the conodont animal. Geol Palaeontol,7: 147-174
[41]  Bower D, Steele A, Kater L. 2013. Micro Raman spectroscopy of carbonaceous material in microfossils and meteorites: Improving a method for life detection. Astrobiology,13: 103-113
[42]  Boyd P W, Watson A J, Law C S, et al. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature,407: 695-702
[43]  Buggisch W. 1991. The global Frasnian-Famennian “Kellwasser Event”. Geol Rundsch,80: 49-72
[44]  Campana S E. 2005. Otolith science entering the 21st century. Mar Fres Res,56: 485-495
[45]  Frederiksen M, Edwards M, Richardson A J, et al. 2006. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J Anim Ecol,75: 1259-1268
[46]  Giles K A, McMillan N J, McCarson B L. 2002. Geochemical analysis and paleoecological implications of phosphatic microspherules (otoliths?) from Frasnian-Famennian boundary strata in the Great Basin, USA. Paleogeogr Paleoclimatol Paleoecol,181: 111-125
[47]  Glass B P, Simonson B M. 2012. Distal impact ejecta layers: Spherules and More. Elements,8: 43-48
[48]  Glenister B F, Klapper G, Chauff K M. 1976. Conodont Pearls? Science,193: 571-573
[49]  Gong Y M, Li B H, Wang C Y, et al. 2001. Orbital cyclostratigraphy of the Devonian Frasnian-Famennian transition in South China. Paleogeogr Paleoclimatol Paleoecol,168: 237-248
[50]  Simonson B M, Glass B P. 2004. Spherule layers-Records of ancient impacts. Annu Rev Earth Planet Sci,32: 329-361
[51]  Stauffer C R. 1935. The Conodont fauna of the decorah shale (Ordovician). J Paleontol,9: 596-620
[52]  Stauffer C R. 1940. Conodonts from the Devonian and associated clays of Minnesota. J Paleontol,14: 417-435
[53]  Stigall A L. 2012. Speciation collapse and invasive species dynamics during the late Devonian “Mass Extinction”. Geol Soc Am Today,22: 4-9
[54]  Tappan H. 1982. Extinction or survival: Selectivity and causes of Phanerozoic crises. Geol Soc Am Spec Pap,190: 265-276
[55]  Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature,400: 525-531
[56]  Ver Straeten C A, Brett C E, Sageman B B. 2011. Mudrock sequence stratigraphy: A multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Paleogeogr Paleoclimatol Paleoecol,304: 54-73
[57]  Walliser O. 1996. Global Events in the Devonian and Carboniferous. In: Walliser O eds. Global Events and Event Stratigraphy in the Phanerozoic. Berlin: Springer-Verlag. 225-250
[58]  Wang C Y, Ziegler W. 2002. The Frasnian/Famennian conodont mass extinction and recovery in South China. Senckenbergiana Lethaea,82: 463-493
[59]  Wang K. 1992. Glassy Microspherules (Microtektites) from an Upper Devonian Limestone. Science,256: 1547-1550
[60]  Wang K, Attrep M, Orth J C J. 1993. Global iridium anomaly, mass extinction, and redox change at the Devonian-Carboniferous boundary. Geology,21: 1071-1074
[61]  Wang K, Chatterton B D E. 1993. Microspherules in Devonian sediments: Origins, geological significance and contamination problems. Can J Earth Sci,30: 1660-1667
[62]  Xu B, Gu Z Y, Han J T, et al. 2008. Environmental changes during Frasnian-Famennian transition in south China: A multiproxy approach. J Geophys Res-Biogeosci,113: 1-11
[63]  Xu B, Gu Z Y, Wang C Y, et al. 2012. Carbon isotopic evidence for the associations of decreasing atmospheric CO2 level with the Frasnian- Famennian mass extinction. J Geophys Res-Biogeosci,117: 1-12
[64]  Youngquist W, Miller A K. 1948. Additional conodonts from the Sweetland Creek shale of Iowa. J Paleontol,22: 440-450 Yudina A B, Racki G, Savage N M, et al. 2002. The Frasnian-Famennian events in a deep-shelf succession, Subpolar Urals: Biotic, depositional, and geochemical records. Acta Palaeontol Polon,47: 355-372
[65]  龚一鸣, 李保华, 吴诒. 2002c. 广西泥盆系弗拉阶-法门阶之交分子地层研究. 自然科学进展,12: 292-297
[66]  龚一鸣, 司远兰, 徐光辉, 等. 2001. 晚泥盆世磷质微球粒—可能的动物卵细胞. 地质学报,75: 441-445
[67]  龚一鸣, 吴诒, 杜远生, 等. 1997. 华南泥盆纪海平面弯化节律及圈层耦合关系. 地质学报,71: 212-226
[68]  龚一鸣, 徐冉, 李保华. 2003. 分叉波痕在广西上泥盆统钙质浊积岩中的发现及意义. 地质论评,49: 379-382
[69]  季强. 1994. 从牙形类研究论华南弗拉斯阶-法门阶生物灭绝事件. 见: 中国地质科学院地层古生物论文集编辑委员会, 主编. 地层古生物论文集(第24辑). 北京: 地质出版社. 79-107
[70]  廖卫华. 2001. 中国晚泥盆世F/F生物集群绝灭事件及其后的生物复苏的研究. 中国科学D辑: 地球科学,31: 663-667
[71]  廖卫华. 2004. 华南晚泥盆世弗拉期-法门期之交大灭绝及其后的残存与复苏. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 437-456
[72]  王玉净, 罗辉. 2004. 华南晚泥盆世弗拉期-法门期之交大灭绝事件中放射虫动物群的兴衰. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 381-408
[73]  吴诒, 龚一呜, 杜远生. 1997. 华南泥盆纪层序地层及海平面变化. 武汉: 中国地质大学出版社. 110
[74]  吴诒, 周怀玲, 蒋廷操, 等. 1987. 广西泥盆纪沉积相古地理及矿产. 南宁: 广西人民出版社. 292
[75]  徐冉, 龚一鸣, 曾剑威. 2008. 华南晚泥盆世弗拉期-法门期之交葛万藻与腕足动物的耦合关系. 中国科学D辑: 地球科学,38: 1514-1520
[76]  徐冉, 龚一鸣, 汤中道. 2006. 菌藻类繁盛: 晚泥盆世大灭绝的疑凶? 地球科学—中国地质大学学报,31: 787-797
[77]  Campana S E, Neilson J D. 1985. Microstructure of fish otoliths. Can J Fish Aquat Sci,42: 1014-1032
[78]  Campana S E, Thorrold S R. 2001. Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci,58: 30-38
[79]  Checkley D M, Dickson A G, Takahashi M, et al. 2009. Elevated CO2 enhances otolith growth in young fish. Science,324: 1683
[80]  Chen D Z, Qing H R, Li R W. 2005. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13Ccarb, δ13Corg and 87Sr/86Sr isotopic systematics. Earth Planet Sci Lett,235: 151-166
[81]  Chen D Z, Tucker M E. 2003. The Frasnian-Famennian mass extinction: Insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China. Paleogeogr Paleoclimatol Paleoecol,193: 87-111
[82]  Claeys P, Casier J G. 1994. Microtektite-like impact glass associated with the Frasnian-Famennian boundary mass extinction. Earth Planet Sci Lett,122: 303-315
[83]  Claeys P, Casier J G, Margolis S V. 1992. Microtektites and mass extinctions: Evidence for a late Devonian Asteroid impact. Science,257: 1102-1104
[84]  Copper P. 1986. Frasnian/Famennian mass extinction and cold-water oceans. Geology,14: 835-839
[85]  Donoghue P C J, Forey P L, Aldridge R J. 2000. Conodont affinity and chordate phylogeny. Biol Rev,75: 191-251
[86]  Escribano R, Sloan J J, Siddique N, et al. 2001. Raman spectroscopy of carbon-containing particles. Vibr Spectr,26: 179-186
[87]  Filipiak P. 2002. Palynofacies around the Frasnian/Famennian boundary in the Holy Cross Mountains, southern Poland. Paleogeogr Paleoclimatol Paleoecol,181: 313-324
[88]  Ingall E, Jahnke R. 1997. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Mar Geol,139: 219-229
[89]  Joachimski M M, Breisig S, Buggisch W, et al. 2009. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth Planet Sci Lett,284: 599-609
[90]  Joachimski M M, Buggisch W. 1993. Anoxic events in the late Frasnian-Causes of the Frasnian-Famennian faunal crisis? Geology,21: 675-678

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133