全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

华南埃迪卡拉纪-寒武纪过渡期的有机碳同位素梯度和海洋分层

, PP. 1142-1154

Keywords: 晚埃迪卡拉纪,早寒武世,华南,有机碳同位素,海洋分层

Full-Text   Cite this paper   Add to My Lib

Abstract:

?埃迪卡拉纪-早寒武世是地球历史上碳循环的重大波动期,但有关其成因和古环境意义仍存在很大分歧.为阐明这一问题,本文对华南晚埃迪卡拉纪-早寒武世两条剖面进行了高分辨的碳同位素研究.在浅水相区九龙湾-季家坡剖面,晚埃迪卡拉纪灯影组大部分δ13Corg值在-29‰~-24‰变化;而在深水相区龙鼻嘴剖面,大部分δ13Corg值在-35‰~-32‰.这些新的研究结果与华南埃迪卡拉纪-早寒武世其他剖面发表的δ13Corg数据对比表明,δ13Corg在时间和空间上均存在着巨大变化,并受岩相的明显约束.在以碳酸盐岩为主的地层中,δ13Corg相对较高,通常大于-30‰;而在黑色页岩和暗色硅质岩为主的地层中,δ13Corg相对较低,一般小于-32‰.这种有机碳同位素组成的显著差异很难以存在巨大的溶解有机碳库(DOC)解释,我们认为不同微生物类群的贡献可能是导致这种差异的主要因素.浅水相样品中较高的δ13Corg值(>-30‰)与显生宙同位素变化相近,可能反映了光合作用为主的同位素分馏;而深水样品较低的δ13Corg值(<-32‰)可能反映了缺氧环境条件下化能自养或甲烷氧化微生物对有机质的重要贡献.这意味着在埃迪卡拉纪-早寒武世之交扬子地台的海洋仍处于强烈分层状态,且氧化还原界面波动频繁.

References

[1]  Des Marais D J, Strauss H, Summons R E, et al. 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 359: 605-609
[2]  Dong L, Xiao S H, Shen B, et al. 2009. Basal Cambrian microfossils from the Yangtze gorges area (South China) and the Aksu area (Tarim block, northwestern China). J Paleontol, 83: 30-44
[3]  Fike D A, Grotzinger J P, Pratt L M, et al. 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744-747
[4]  Galimov E M. 2004. The pattern of δ13Corg versus HI/OI relation in recent sediments as an indicator of geochemical regime in marine basins: Comparison of the Black Sea, Kara Sea, and Cariaco Trench. Chem Geol, 204: 287-301
[5]  Grotzinger J P, Fike D A, Fischer W W. 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth''s history. Nat Geosci, 4: 285-292
[6]  Guo H, Du Y, Kah L C, et al. 2013. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China: Implications for biological and oceanic evolution. Precambrian Res, 224: 169-183
[7]  Guo Q J, Strauss H, Liu C Q, et al. 2007. Carbon isotopic evolution of the terminal neoproterozoic and early Cambrian: Evidence from the Yangtze platform, South China. Paleogeogr Paleoclimatol Paleoecol, 254: 140-157
[8]  Halverson G P, Hoffman P F, Schrag D P, et al. 2005. Toward a Neoproterozoic composite carbon-isotope record. GSA Bull, 117: 1181-1207
[9]  Harris D, Horwath W R, van Kessel C. 2001. Acid fumigation of soils to remove carbonates prior to total organic carbon or Carbon-13 isotopic analysis. Soil Sci Soc Am J, 65: 853-1856
[10]  Hayes J M, Strauss H, Kaufman A J. 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem Geol, 161: 103-125
[11]  Hollander D J, Smith M A. 2001. Microbially mediated carbon cycling as a control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA): New models for interpreting isotopic excursions in the sedimentary record. Geochim Cosmochim Acta, 65: 4321-4337
[12]  Hua H, Chen Z, Yuan X L, et al. 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33: 277-280
[13]  Ishikawa T, Ueno Y, Komiya T, et al. 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian Explosion. Gondwana Res, 14: 193-208
[14]  Ishikawa T, Ueno Y, Shu D G, et al. 2013. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: High-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China. Precambrian Res, 225: 190-208
[15]  Jacobsen S B, Kaufman A J. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem Geol, 161: 37-57
[16]  Jiang G, Shi X, Zhang S, et al. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Res, 19: 831-849
[17]  Jiang G, Wang X, Shi X, et al. 2012. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542-520 Ma) Yangtze platform. Earth Planet Sci Lett, 317-318: 96-110
[18]  Jiang G, Kaufman A, Christie-Blick N, et al. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth Planet Sci Lett, 261: 303-320
[19]  Jiang G, Sohl L E, Christie-Blick N. 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic implications. Geology, 31: 917-920
[20]  Jiang G, Wang X, Shi X, et al. 2010. Organic carbon isotope constraints on the dissolved organic carbon (DOC) reservoir at the Cryogenian-Ediacaran transition. Earth Planet Sci Lett, 299: 159-168
[21]  Johnston D T, Macdonald F A, Gill B C, et al. 2012. Uncovering the Neoproterozoic carbon cycle. Nature, 483: 320-323
[22]  Kaufman A J, Corsetti F A, Varni M A. 2007. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA. Chem Geol, 237: 47-63
[23]  Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater-stratigraphic and biogeochemical implications. Precambrian Res, 73: 27-49
[24]  Kimura H, Matsumoto R, Kakuwa Y, et al. 1997. The Vendian-Cambrian δ13C record, North Iran: Evidence for overturning of the ocean before the Cambrian Explosion. Earth Planet Sci Lett, 147: E1-E7
[25]  Knauth L P, Kennedy M J. 2009. The late Precambrian greening of the Earth. Nature, 460: 728-732
[26]  Kouchinsky A, Bengtson S, Pavlov V, et al. 2007. Carbon isotope stratigraphy of the Precambrian-Cambrian Sukharikha River section, northwestern Siberian platform. Geol Mag, 144: 609-618
[27]  Kunimitsu Y, Setsuda Y, Furuyama S, et al. 2011. Ediacaran chemostratigraphy and paleoceanography at a shallow marine setting in northwestern Hunan Province, South China. Precambrian Res, 191: 194-208
[28]  Le Guerroue E, Allen P A, Cozzi A, et al. 2006. 50 Myr recovery from the largest negative δ13C excursion in the Ediacaran ocean. Terra Nova, 18:147-153
[29]  Lehmann M F, Bernasconi S M, Barbieri A, et al. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta, 66: 3573-3584
[30]  Li C, Love G D, Lyons T W, et al. 2010. A stratified redox model for the Ediacaran Ocean. Science, 328: 80-83
[31]  Lu M, Zhu M, Zhang J M, et al. 2013. The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin. Precambrian Res, 225:86-109
[32]  常华进, 储雪蕾, 冯连君, 等. 2010. 桂北老堡组硅岩中的铁组分: 指示缺氧含铁的盆地深水古环境. 科学通报, 55: 2010-2017
[33]  陈平. 1984. 湖北宜昌计家坡下寒武统底部小壳化石的发现及其意义. 地层古生物论文集, 13: 49-66
[34]  丁莲芳, 李勇, 陈会鑫. 1992. 湖北宜昌震旦系-寒武系界线地层Micrhystridum regulare化石的发现及地层意义. 微体古生物学报, 9: 303-309
[35]  钱逸. 1999. 中国小壳化石分类学与生物地层学. 北京: 科学出版社. 247
[36]  周传明, 张俊明, 李国祥, 等. 1997. 云南永善肖滩早寒武世早期碳氧同位素记录. 地质科学, 32: 201-211
[37]  Ader M, Macouin M, Trindade R I F, et al. 2009. A multilayered water column in the Ediacaran Yangtze platform? Insights from carbonate and organic matter paired δ13C. Earth Planet Sci Lett, 288: 213-227
[38]  Amthor J E, Grotzinger J P, Schroder S, et al. 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31: 431-434
[39]  Bjerrum C J, Canfield D E. 2011. Towards a quantitative understanding of the late Neoproterozoic carbon cycle. Proc Natl Acad Sci USA, 108: 5542-5547
[40]  Bristow T F, Kennedy M J. 2008. Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology, 36: 863-866
[41]  Canfield D E, Poulton S W, Knoll A H, et al. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321: 949-952
[42]  Canfield D E, Poulton S W, Narbonne G M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315: 92-95
[43]  Chen D, Wang J, Qing H, et al. 2009. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints. Chem Geol, 258: 168-181
[44]  Chen J Y, Bottjer D J, Oliveri P, et al. 2004. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science, 305: 218-222
[45]  Condon D, Zhu M, Bowring S, et al. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308: 95-98
[46]  Conway N M, Kennicutt M C, Van Dover C L. 1994. Stable isotopes in the study of marine chemosynthetic-based food webs. In: Lajtha K, Michener R, eds. Stable Isotopes in Ecology and Environmental Science. Oxford: Blackwell Scientific Publications. 158-186
[47]  Derry L A. 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth Planet Sci Lett, 294: 152-162
[48]  Macouin M, Ader M, Moreau M G, et al. 2012. Deciphering the impact of diagenesis overprint on negative δ13C excursions using rock magnetism: Case study of Ediacaran carbonates, Yangjiaping section, South China. Earth Planet Sci Lett, 351-352: 281-294
[49]  Maloof A C, Ramezani J, Bowring S A, et al. 2010. Constraints on early Cambrian carbon cycling from the duration of the Nemakit-Daldynian-Tommotian boundary δ13C shift, Morocco. Geology, 38: 623-626
[50]  McFadden K A, Huang J, Chu X L, et al. 2008. Pulsed oxidation and bioloical evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 105: 3197-3202
[51]  Narbonne G M. 2005. The ediacarabiota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci, 33: 421-442
[52]  Prave A R, Fallick A E, Thomas C W, et al. 2009. A composite C-isotope profile for the Neoproterozoic Dalradian Supergroup of Scotland and Ireland. J Geol Soc, 166: 845-857
[53]  Rooney M A, Claypool G E, Chung H M. 1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem Geol, 126: 219-232
[54]  Rothman D H, Hayes J M, Summons R E. 2003. Dynamics of the Neoproterozoic carbon cycle. Proc Natl Acad Sci USA, 100: 8124-8129
[55]  Sahoo S K, Planavsky N J, Kendall B, et al. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546-549
[56]  Schrag D P, Higgins J A, Macdonald F A, et al. 2013. Authigenic carbonate and the history of the global carbon cycle. Science, 339: 540-543
[57]  Scott C, Lyons T W, Bekker A, et al. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456-459
[58]  Shen B, Xiao S H, Bao H M, et al. 2011. Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation. Geochim Cosmochim Acta, 75: 1357-1373
[59]  Shen B, Xiao S H, Zhou C M, et al. 2010. Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin, NW China: Basin stratification in the aftermath of an Ediacaran glaciation postdating the Shuram event? Precambrian Res, 177: 241-252
[60]  Shen Y N, Zhang T G, Hoffman P F. 2008. On the coevolution of Ediacaran oceans and animals. Proc Natl Acad Sci USA, 105: 7376-7381
[61]  Steiner M, Li G X, Qian Y, et al. 2007. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Paleogeogr Paleoclimatol Paleoecol, 254: 67-99
[62]  Summons R, Franzmann P D, Nichols P D. 1998. Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org Geochem, 28: 465-475
[63]  Summons R, Jahnke L L, Roksandic Z. 1994. Carbon isotope fractionation in lipids from methanotrophic bacteria: Relevance for interpretations of the geochemical record of biomarkers. Geochim Cosmochim Acta, 58: 2853-2863
[64]  Swanson-Hysell N L, Rose C V, Calmet C C, et al. 2010. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science, 328: 608-611
[65]  Wang J, Chen D, Yan D, et al. 2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chem Geol, 306-307: 129-138
[66]  Wang J, Li Z X. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Res, 122: 141-158
[67]  Wang L, Shi X, Jiang G. 2012. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Paleogeogr Paleoclimatol Paleoecol, 333-334: 218-227
[68]  Wang W, Zhou C, Yuan X, et al. 2012. A pronounced negative δ13C excursion in an Ediacaran succession of western Yangtze Platform: A possible equivalent to the Shuram event and its implication for chemostratigraphic correlation in South China. Gondwana Res, 22: 1091-1101
[69]  Wang X, Shi X, Jiang G, et al. 2012. New U-Pb age from the basal Niutitang Formation in South China: Implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran-Cambrian transition. J Asian Earth Sci, 48: 1-8
[70]  Xiao S, McFadden K A, Peek S, et al. 2012. Integrated chemostratigraphy of the Doushantuo Formation at the northern Xiaofenghe section (Yangtze Gorges, South China) and its implication for Ediacaran stratigraphic correlation and ocean redox models. Precambrian Res, 192-195: 125-141
[71]  Xiao S, Shen B, Zhou C, et al. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proc Natl Acad Sci USA, 102: 10227-10232
[72]  Xiao S, Zhang Y, Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391: 553-558
[73]  Yin L. 1997. Precambrian-Cambrian transitional acritarch biostratigraphy of the Yangtze Platform. Bull Natl Mus Nat Sci (Taipei), 10: 217-231
[74]  Yin L, Zhu M, Knoll A H, et al. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446: 661-663
[75]  Yuan X, Chen Z, Xiao S, et al. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470: 390-393
[76]  Zhao J H, Zhou M F, Yan D P, et al. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39: 299-302
[77]  Zhou C, Xiao S. 2007. Ediacaran δ13C chemostratigraphy of South China. Chem Geol, 237: 89-108
[78]  Zhu M, Gehling J G, Xiao S, et al. 2008. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36: 867-870
[79]  Zhu M, Lu M, Zhang J, et al. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Res, 225: 7-28
[80]  Zhu M, Zhang J, Yang A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Paleogeogr Paleoclimatol Paleoecol, 254: 7-61
[81]  Zhu M, Zhang J, Steiner M, et al. 2003. Sinian-Cambrian stratigraphic framework for-shallow- to deep-water environments of the Yangtze Platform: An integrated approach. Prog Nat Sci, 13: 951-960

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133