全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

地球生物学前沿:进展与问题

, PP. 1072-1086

Keywords: 微生物功能群,极端环境,生物危机,古生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

?地球生物学是地球科学与生命科学的交叉学科,其核心任务是探讨生物与环境的相互作用和协同演化.在分析国际地球生物学的研究进展、中国科学院学部地球生物学前沿论坛成果以及本专辑代表性论文的基础上,本文简要评述了重大地质突变期的地球生物学、地质微生物与全球环境变化以及极端环境地球生物学这三大主题的主要研究进展和存在的科学问题.在重大地质突变期的地球生物学方面,人们已经认识到生命的起源、辐射、灭绝和复苏等重大生命事件的发生与地球深部过程以及受其影响的海-陆-气环境过程密切相关;但对于地质历史时期生物与环境是如何协同演化的,其具体的机制和动力学过程是什么,还知之甚少.在地质微生物与全球环境变化方面,各类地质微生物功能群不仅灵敏地响应地质环境的变化,而且通过元素循环和矿物转变对地质环境产生重要影响;但人们对不同地质微生物功能群是如何通过协同作用而改变地质环境的,还了解得很少.在极端环境地球生物学方面,人们从深海、冰川冻土、地下水、洞穴和热泉等极端环境中发现和分离出一些重要的微生物,并开展了许多生物学的研究;但真正能上升到极端环境地球生物学的研究很少,极端环境微生物的地球化学功能还远未查明.地球生物学将大大拓展生物过程研究的时空范畴,在资源领域和全球变化领域有广阔的应用前景.地球生物学需要多学科的协同研究,包括加强地质微生物的研究,加强生物地球化学循环的数据库建设和定量化模型研究,加强各类典型地质环境条件的研究,加强生物过程与物理化学过程的耦合研究.

References

[1]  Harper D A T. 2006. The Ordovician biodiversification: Setting an agenda for marine life. Paleogeogr Paleoclimatol Paleoecol, 232: 148-166
[2]  Hazen R M, Ferry J M. 2010. Mineral evolution: Mineralogy in the fourth dimension. Elements, 6: 9-12
[3]  Hoffman P F, Kaufman A J, Halverson G P, et al. 1998. A Neoproterozoic snowball Earth. Science, 281: 1342-1346
[4]  Hou X, Aldridge R J, Bergstr?m J, et al. 2004. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. Oxford: Blackwell Publishing. 1-233
[5]  Hua H, Chen Z, Yuan X, et al. 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33: 277-280
[6]  Isozaki Y. 1997. Permo-Triassic superanoxia and stratified superocean: Records from lost deep sea. Science, 276: 235-238
[7]  Jenkyns H C. 2003. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world. Philos Trans R Soc A-Math Phys Eng Sci, 361: 1885-1916
[8]  Jia C, Huang J, Kershaw S, et al. 2012. Microbial response to limited nutrients in shallow water immediately after the End-Permian mass extinction. Geobiology, 10: 60-71
[9]  Konhauser K O, Pecoits E, Lalonde S V, et al. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458: 750-753
[10]  Kuypers M M M, van Breugel Y, Schouten S, et al. 2004. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology, 32: 853-856
[11]  Lever M A, Rouxel O, Alt J C, et al. 2013. Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt. Science, 339: 1305-1308
[12]  Li C, Love G D, Lyons J R, et al. 2010. A stratified redox model for the Ediacaran Ocean. Science, 328: 80-83
[13]  Li Y, Konhauser K O, Cole D R, et al. 2011. Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology, 29: 707-710
[14]  Li Y, Sun S, Chan L S. 2013. Phosphogenesis in the 2460 and 2728 milion-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere. Ecol Evol, 3: 115-125
[15]  Liu D, Dong H, Bishop M E, et al. 2011. Reduction of structural Fe(III)in nontronite by methanogen Methanosarcina barkeri. Geochim Cosmochim Acta, 75: 1057-1071
[16]  Lu A, Li Y, Jin S, et al. 2012. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat Commun, 3: 768
[17]  Luo G, Kump L R, Wang Y, et al. 2010. Isotopic evidence for an anomalously low oceanic sulphate concentration following End-Permian mass extinction. Earth Planet Sci Lett, 300: 101-111
[18]  Luo G, Wang Y, Algeo T J, et al. 2011. Enhanced nitrogen fixation in the immediate aftermath of the latest Permian marine mass extinction. Geology, 39, 647-650
[19]  Luo Z, Ji Q, Wible J R, et al. 2003. An Early Cretaceous tribosphenic mammal and metatherian evolution. Science, 302: 1934-1940
[20]  Macdonald F A, Schmitz M D, Crowley J L, et al. 2010. Calibrating the Cryogenian. Science, 327: 1241-1243
[21]  Margesin R, Miteva V. 2011. Diversity and ecology of psychrophilic microorganisms. Res Microbiol, 162: 346-361
[22]  Martin W, Baross J, Kelly D, et al. 2008. Hydrothermal vents and the origin of life. Nat Rev Microbiol, 6: 805-814
[23]  Marynowski L, Filipiak P. 2007. Water column euxinia and wildfire evidence during deposition of the Upper Famennian Hangenberg event horizon from the Holy Cross Mountains (central Poland). Geol Mag, 144: 569-595
[24]  Mehta M P, Baross J A. 2006. Nitrogen fixation at 92°C by a hydrothermal vent archaeon. Science, 314: 1783-1786
[25]  Meyer-Dombard D R, Shock E L, Amend J. 2005. Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology, 3: 211-227
[26]  Mikucki J A, Pearson A, Johnston D T, et al. 2009. A contemporary microbially maintained subglacial ferrous “Ocean”, Science, 324: 397-400
[27]  Miller R F, Cloutier R, Turner S. 2003. The oldest articulated chondrichthyan from the Early Devonian period. Nature, 425: 501-504
[28]  Miteva V, Teacher C, Sowers T, et al. 2009. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environmen Microbiol, 11: 640-656
[29]  Murray A E, Kenig F, Fritsen C H, et al. 2012. Microbial life at -13°C in the brine of an ice-sealed Antarctic lake. Proc Natl Acad Sci USA, 109: 20626-20631
[30]  Olson J M. 2006. Photosynthesis in the Archean Era. Photosynth Res, 88: 109-117
[31]  Orphan V J, Hinrichs K U, Ussler W, et al. 2001. Comparative analysis of methane-oxidizing Archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol, 67: 1922-1934
[32]  Papineau D, de Gregorio B T, Cody G D, et al. 2011. Young poorly crystalline graphite in the >3.8-Gyr-old Nuvvuagittuq banded iron formation. Nat Geosci, 4: 376-379
[33]  Payne J L, Lehrmann D J, Wei J, et al. 2004. Large perturbations of the carbon cycle during recovery from the End-Permian extinction. Science, 305: 506-509
[34]  Pearson A, Ingalls A E. 2013. Assessing the use of archaeal lipids as marine environmental proxies. Annu Rev Earth Planet Sci, 41: 359-384
[35]  Posth N R, Hegler F, Konhauser K O, et al. 2008. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nat Geosci, 1: 703-708
[36]  Pronk M, Goldscheider N, Zopfi J . 2009. Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeol J, 17: 37-48
[37]  Raghoebarsing A A, Pol A, van de Pas-Schoonen K T, et al. 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440: 918-921
[38]  Rampino M R, Prokoph A, Adler A. 2000. Tempo of the end-Permian event: High-resolution cyclostratigraphy at the Permian-Triassic boundary. Geology, 28: 643-646
[39]  Rasmussen B, Fletcher I R, Brocks J J, et al. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature, 455: 1101-1104
[40]  Reichow M K, Pringle M S, Al''Mukhamedov A I, et al. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet Sci Lett, 277: 9-20
[41]  Reigstad L J, Richter A, Daims H, et al. 2008. Nitrification in terrestrial hot springs of Iceland and Kamchatka. Fems Microbiol Ecol, 64: 167-174
[42]  Reiter J, Thiel V. 2011. Encyclopedia of Geobiology. Berlin: Springer. 1-927
[43]  Yin H, Xie S, Luo G, et al. 2012. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan. Earth-Sci Rev, 115: 163-172
[44]  Yin L, Zhu M, Knoll A H, et al. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446: 661-663
[45]  Yuan X, Xiao S, Taylor T N. 2005. Lichen-like symbiosis 600 million years ago. Science, 308: 1017-1020
[46]  Zehr J P, Kudela R M. 2011. Nitrogen cycle of the open ocean: From genes to ecosystems. Annu Rev Mar Sci, 3: 197-225
[47]  Zhang C L, Pancost R D, Qian Y, et al. 2003. Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico. Org Geochem, 34: 827-834
[48]  Zhou Z. 2004. The origin and early evolution of birds: Discoveries, disputes, and perspectives from fossil evidence. Naturwissenschaften, 91: 455-471
[49]  Zhu M, Strauss H, Shields G A. 2007. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Paleogeogr Paleoclimatol Paleoecol, 254: 1-6
[50]  Zhu M, Zhao W, Jia L, et al. 2009. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature, 458: 469-474
[51]  陈均远. 2004. 动物世界的黎明. 南京: 江苏科学技术出版社. 1-366
[52]  丁素因, 童永生, Glyde W C, 等, 2011. 亚洲古近纪早期的年代学和哺乳动物群更替. 古脊椎动物学报, 49: 1-28
[53]  侯素宽, 邓涛, 何文, 等. 2014. 弓颌猪(偶蹄目、猪科)的觅食行为: 头骨和下颌骨形态功能分析的研究实例. 中国科学: 地球科学, 44: 1218-1228
[54]  黄程, 龚一鸣. 2014. 广西杨堤剖面上泥盆统弗拉阶-法门阶之交磷质微球粒的发现及其地球生物学意义. 中国科学: 地球科学, 44: 1171-1184
[55]  李国山, 王永标, 卢宗盛, 等. 2014. 古近纪湖相烃源岩形成的地球生物学过程. 中国科学: 地球科学, 44: 1206-1217
[56]  李俊, 李一良. 2014. 模拟成岩或低级变质作用对铁氧化菌席的影响. 中国科学: 地球科学, 44: 1263-1272
[57]  连宾, 袁道先, 刘再华. 2011. 岩溶生态系统中微生物对岩溶作用影响的认识. 科学通报, 56: 2158-2161
[58]  林巍, 王寅炤, 陈海涛, 等. 2014. 吉林龙岗火山区玛珥湖趋磁细菌多样性与分布. 中国科学: 地球科学, 44: 1253-1262
[59]  刘丛强. 2007. 生物地球化学过程与地表物质循环——西南喀斯特流域侵蚀与生源要素循环. 北京: 科学出版社. 447-583
[60]  刘喜停, 颜佳新, 薛武强, 等. 2014. 华南中二叠统栖霞组海相烃源岩形成的地球生物学过程. 中国科学: 地球科学, 44: 1185-1192
[61]  鲁安怀, 王鑫, 李艳, 等. 2014. 矿物光电子与地球早期生命起源及演化初探. 中国科学: 地球科学, 44: 1117-1123
[62]  罗根明, 谢树成, 刘邓. 2014. 二叠纪-三叠纪之交重大地质突变期微生物对环境的作用. 中国科学: 地球科学, 44: 1193-1205
[63]  罗攀, 彭平安, 吕厚远, 等. 2012. 表土长链正构烷烃CPI 值的纬向变化: CPI作为气候干旱程度替代指标的证据. 科学通报, 42: 1729-1741
[64]  潘永信, 邓成龙, 刘青松, 等. 2004. 趋磁细菌磁小体的生物矿化作用和磁学性质研究进展. 科学通报, 49: 2504-2510
[65]  蒲阳, 张虎才, 王永莉, 等. 2011. 青藏高原冰蚀湖沉积物正构烷烃记录的气候和环境变化信息: 以希门错为例. 科学通报, 56: 1132-1139
[66]  邱铸鼎, 李传夔. 2004. 中国哺乳动物区系的演变与青藏高原的抬升. 中国科学D辑: 地球科学, 34: 845-854
[67]  戎嘉余, 周忠和, 王怿, 等. 2009. 生命过程与环境的协同演化. 见: 中国科学院地学部地球科学发展战略研究组, 主编. 21世纪中国地球科学发展战略报告. 北京: 科学出版社. 81-91
[68]  石敏, 冯庆来, 朱士兴. 2014. 华北中元古代燕山盆地生物群演化及其与地质事件的耦合关系. 中国科学: 地球科学, 44: 1124-1141
[69]  史晓颖, 蒋干清. 2011. 前寒武纪微生物地质作用与地球表层系统演化. 见: 谢树成, 殷鸿福, 史晓颖, 主编. 地球生物学: 生命与地球环境的相互作用和协同演化. 北京: 科学出版社. 191.
[70]  舒德干. 2006. 澄江化石库中主要后口动物类群起源的初探. 见: 戎嘉余, 方宗杰, 周忠和, 等, 主编. 生物的起源, 辐射与多样性演 变——华夏化石记录的启示. 北京: 科学出版社. 109-123
[71]  王先彬, 欧阳自远, 卓胜广, 等. 2014. 蛇纹石化作用、非生物成因有机化合物与深部生命. 中国科学: 地球科学, 44: 1096-1106
[72]  王新强, 史晓颖, Jiang G Q, 等. 2014. 华南埃迪卡拉纪-寒武纪过渡期的有机碳同位素梯度和海洋分层. 中国科学: 地球科学, 44: 1142-1154
[73]  王怿. 2010. 陆生植物登陆之谜. 见: “10000个科学难题”地球科学编委会, 主编. 10000个科学难题(地球科学卷). 北京: 科学出版社. 182-185
[74]  向兴, 王红梅, 龚林锋, 等. 2014. 细菌群落在神农架大九湖泥炭藓与表层沉积物的垂向变化及其生态意义. 中国科学: 地球科学, 44: 1244-1252
[75]  肖湘, 张宇. 2014. 极端环境中的生命过程: 生命与环境协同演化探讨. 中国科学: 地球科学, 44: 1087-1095
[76]  谢树成, 杨欢, 罗根明, 等. 2012. 地质微生物功能群: 生命与环境相互作用的重要突破口. 科学通报, 57: 3-22
[77]  谢树成, 龚一鸣, 童金南, 等. 2006. 从古生物学到地球生物学的跨越. 科学通报, 51: 2327-2336
[78]  谢树成, 黄咸雨, 杨欢, 等. 2013. 示踪全球环境变化的微生物代用指标. 第四纪研究, 33: 1-18
[79]  谢树成, 殷鸿福, 史晓颖, 等. 2011. 地球生物学: 生命与地球环境的相互作用和协同演化. 北京: 科学出版社. 1-345
[80]  许强, 丁林, 张利云, 等. 2009. 青藏高原现代食草动物牙齿珐琅质稳定同位素特征及古高度重建意义. 科学通报, 54: 2160-2168
[81]  杨欢, 丁伟华, 谢树成. 2014. 海南尖峰岭不同海拔土壤中微生物脂肪酸和脂肪醇分布特征及其对古海拔、古温度重建的启示. 中国科学: 地球科学, 44: 1229-1243
[82]  杨遵仪, 吴顺宝, 殷鸿福, 等. 1991. 华南二叠-三叠纪过渡期地质事件. 北京: 地质出版社
[83]  殷鸿福, 黄思骥, 张克信, 等. 1989. 华南二叠纪-三叠纪之交的火山活动及其对生物绝灭的影响. 地质学报, 63: 169-181
[84]  殷鸿福, 谢树成, 秦建中, 等. 2008. 对地球生物学、生物地质学和地球生物相的一些探讨. 中国科学D辑: 地球科学, 38: 1473-1480
[85]  殷鸿福, 谢树成, 颜佳新, 等. 2011. 海相碳酸盐烃源岩评价的地球生物学方法. 中国科学: 地球科学, 41: 895-909
[86]  袁训来, 肖书海, 尹磊明, 等. 2002. 陡山沱期生物群——早期动物辐射前夕的生命. 合肥: 中国科学技术大学出版社. 1-171
[87]  詹仁斌, 戎嘉余. 2006. 华南早-中奥陶世腕足动物的辐射. 见: 戎嘉余, 方宗杰, 周忠和, 等, 主编. 生物的起源、 辐射与多样性演变——华夏化石记录的启示. 北京: 科学出版社. 259-283
[88]  张克信, 童金南, 殷鸿福, 等. 1996. 浙江长兴二叠系一三叠系界线剖面层序地层研究. 地质学报, 70: 270-281
[89]  张兴亮, 舒德干. 2014. 寒武纪大爆发的因果关系. 中国科学: 地球科学, 44: 1155-1170
[90]  张元动, 陈旭. 2006. 华南早-中奥陶世笔石动物的辐射演化. 见: 戎嘉余, 方宗杰, 周忠和, 等, 主编. 生物的起源、辐射与多样性演 变——华夏化石记录的启示. 北京: 科学出版社. 285-316
[91]  郑艳红, 周卫健, 谢树成, 等. 2009. 正构烷烃分子化石与孢粉记录的指示意义对比: 以华南地区为例. 科学通报, 54: 1749-1755
[92]  周浩达, 胡建芳, 明荔莉, 等. 2011. 150年来若尔盖泥炭沉积支链四醚膜类脂及古环境重建. 科学通报, 56: 1741-1748
[93]  周志毅, 袁文伟, 周志强. 2006. 华南陆块奥陶纪三叶虫辐射. 见: 戎嘉余, 方宗杰, 周忠和, 等, 主编. 生物的起源、辐射与多样性演 变——华夏化石记录的启示. 北京: 科学出版社. 197-213
[94]  Agogué H, Brink M, Dinasquet J, et al. 2008. Major gradients in putatively nitrifying and non-nitrifying archaea in the deep North Atlantic. Nature, 456: 788-791
[95]  Anesio A M, Hodson A J, Fritz A, et al. 2009. High microbial activity on glaciers: Importance to the global carbon cycle. Glob Change Biol, 15: 955-960
[96]  Armstrong H A, Abbott G D, Turner B R, et al. 2009. Black shale deposition in an Upper Ordovician-Silurian permanently stratified, peri-glacial basin, southern Jordan. Paleogeogr Paleoclimatol Paleoecol, 273: 368-377
[97]  Bakermans C. 2008. Limits for microbial life at subzero temperatures. In: Margesin R, Schinner F, Marx J C, et al, eds. Psychrophiles: From Biodiversity to Biotechnology. Berlin: Springer Verlag. 17-28
[98]  Barton H A, Northup D E. 2007. Geomicrobiology in cave environments: Past, current and future perspectives. J Cave Karst Stud, 69: 163-178
[99]  Basu A, Petaev M I, Poreda R J, et al. 2003. Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica. Science, 302: 1388-1392
[100]  Becker L, Poreda R J, Basu A R, et al. 2004. Bedout: A possible End-Permian impact crater offshore of Northwestern Australia. Science, 304: 1469-1476
[101]  Brasier M D, Green O R, Jephcoat A P, et al. 2002. Questioning the evidence for Earth''s oldest fossils. Nature, 416: 76-81
[102]  Ca?averas J C, Cuezva S, Sanchez-Moral S, et al. 2006. On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften, 93: 27-32
[103]  Canfield D E. 1998. A new model for Proterozoic ocean chemistry. Nature, 396: 450-453
[104]  Cao C, Love G D, Hays L E, et al. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the End-Permian mass extinction event. Earth Planet Sci Lett, 281: 188-201
[105]  Chen Y, Wu L, Boden R, et al. 2009. Life without light: Microbial diversity and evidence of sulfur-and ammonium-based chemolithotrophy in Movile Cave. ISME J, 3: 1093-1104
[106]  Chen Z, Benton M J. 2012. The timing pattern of biotic recovery following the End-Permian mass extinction. Nat Geosci, 5: 375-383
[107]  Chro?áková A, Horák A, Elhottová D, et al. 2009. Diverse archaeal community of a bat guano pile in Domica cave (Slovak Karst, Slovakia). Folia Microbiol, 54: 436-446
[108]  Collin P, Kershaw S, Crasquin-Soleau S, et al. 2009. Facies changes and diagenetic processes across the Permian-Triassic boundary event horizon, Great Bank of Guizhou, South China: A controversy of erosion and dissolution. Sedimentology, 56: 677-693
[109]  Crowley T J, Berner R A. 2001. CO2 and climate change. Science, 292: 870-872
[110]  Daeschler E, Shubin N H, Jenkins Jr F A. 2006. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature, 440: 757-763
[111]  Danielopol D L, Pospisil P, Rouch R. 2000. Biodiversity in groundwater: A large scale view. Trends Ecol Evol, 15: 223-224
[112]  de la Torre J R, Walker C B, Ingalls A E, et al. 2008. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol, 10: 810-818
[113]  Dong H. 2010. Mineral-microbe interactions: A review. Front Earth Sci China, 4: 127-147
[114]  Edwards K J, Wheat C G, Sylvan J B. 2011. Under the sea: Microbial life in volcanic oceanic crust. Nat Rev Microbiol, 9: 703-712
[115]  Ekstrom S, Noziere B, Hultberg M, et al. 2010. A possible role of ground-based microorganisms on cloud formation in the atmosphere. Biogeosciences, 7: 387-394
[116]  Engel A S. 2010. Microbial diversity of cave ecosystems. In: Barton L L, Mandl M, Loy A, eds. Geomicrobiology: Molecular and Environmental Perspective. Dordrecht:Springer. 219-238
[117]  Fisk M R, Giovannoni S J, Thorseth I H. 1998. Alteration of oceanic volcanic glass: Textural evidence of microbial activity. Science, 281: 978-979
[118]  Gill B C, Lyons T W, Young S A, et al. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469: 80-83
[119]  Glud R, Wenzh?fer F, Middelboe M, et al. 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci, 6: 284-288
[120]  Gowik U, Westhoff P. 2011. The path from C3 to C4 Photosynthesis. Plant Physiol, 155: 56-63
[121]  Grice K, Cao C, Love G D, et al. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307: 706-709
[122]  Griebler C, Lueders T. 2009. Microbial biodiversity in groundwater ecosystem. Freshw Biol, 54: 649-677
[123]  Grzebyk D, Schofield O, Vetriani C, et al. 2003. The Mesozoic radiation of Eukaryotic algae: The portable plastid hypothesis. J Phycol, 39: 259-267
[124]  Jiang G Q, Kennedy M J, Christie-Blick N. 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426: 822-826
[125]  Jiang H, Huang Q, Dong H, et al. 2010. RNA-based investigation of ammonia-oxidizing archaea in hot springs of Yunnan Province, China. Appl Environ Microbiol, 76: 4538-4541
[126]  Jiao N Z, Herndl G J, Hansell D A, et al. 2010. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat Rev Microbiol, 8: 593-599
[127]  Jin Y G, Wang Y, Wang W, et al. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289: 432-436
[128]  Johnson S S, Hebsgaard M B, Christensen T R, et al. 2007. Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci USA, 104: 14401-14405
[129]  Johnson C M, Beard B L, Klein C, et al. 2008. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim Cosmochim Acta, 72: 151-169
[130]  Kalyuzhnaya M G, Lapidus A, Ivanova N, et al. 2008. High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol, 26: 1029-1034
[131]  Klein C. 2005. Some Precambrian banded iron-formations(BIFs)from around the world: Their age, geological setting, mineralogy, metamorphism, geochemistry, and origin. Am Mineral, 90: 1473-1499
[132]  Knoll A H, Bambach R K, Payne J L, et al. 2007. Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett, 256: 295-313
[133]  Knoll A H, Canfield D E, Konhauser K O. 2012. Fundamentals of Geobiology. Chichester: Wiley-Blackwell. 1-443
[134]  Konhauser K O, Amskold L, Lalonde S V, et al. 2007. Decoupling photochemical Fe(II)oxidation from shallow-water BIF deposition. Earth Planet Sci Lett, 258: 87-100
[135]  Renne P R, Black M T, Zhang Z C, et al. 1995. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian Flood volcanism. Science, 269: 1413-1416
[136]  Rinke C, Schwientek P, Sczyrba A, et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499: 431-437
[137]  Rogers D R, Casciotti K L. 2010. Abundance and diversity of archaeal ammonia oxidizers in a coastal groundwater system. Appl Environmen Microbiol, 76: 7938-7948
[138]  Rothschild L J, Mancinelli R L. 2001. Life in extreme environments. Nature, 409: 1092-1101
[139]  Schleper C, Jurgens G, Jonuscheit M. 2005. Genomic studies of uncultivated archaea. Nat Rev Microbiol, 3: 479
[140]  Schouten S, Hopmans E C, Sinninghe Damsté J S. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Org Geochem, 54: 19-61
[141]  Shen S, Crowley J L, Wang Y, et al. 2011. Calibrating the End-Permian mass extinction. Science, 334: 1367-1372
[142]  Shen Y, Farquhar J, Zhang H, et al. 2011. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nat Commun, 2: 210
[143]  Shu D, Luo H, Morris S C, et al. 1999. Lower Cambrian vertebrates from South China. Nature, 402: 42-46
[144]  Song H, Wignall P, Chen Z, et al. 2011. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology, 39: 739-742
[145]  Song H, Wignall P B, Tong J, et al. 2012. Two pulses of extinction during the Permian-Triassic crisis. Nature Geosci, 6: 52-56
[146]  Steemans P, Herisse A L, Melvin J, et al. 2009. Origin and radiation of the earliest vascular land plant. Science, 324: 353
[147]  Stein W E, Mannolini F, VanAller Hernick L, et al. 2007. Giant cladoxylopsid trees resolve the enigma of the Earth''s earliest forest stumps at Gilboa. Nature, 446: 904-907
[148]  Strom S L. 2008. Microbial ecology of ocean biogeochemistry: A community perspective. Science, 320: 1043-1045
[149]  Sun Y, Joachimski M M, Wignall P B, et al. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 338: 366-370
[150]  Tong J, Zhang S, Zuo J, et al. 2007. Events during Early Triassic recovery from the End-Permian extinction. Glob Planet Change, 55: 66-80
[151]  van Bentum E C, Hetzel A, Brumsack H J, et al. 2009. Reconstruction of water column anoxia in the equatorial Atlantic during the Cenomanian-Turonian oceanic anoxic event using biomarker and trace metal proxies. Paleogeogr Paleoclimatol Paleoecol, 280: 489-498
[152]  Vaughan M J, Maier R M, Pryor B M. 2011. Fungal communities on speleothem surfaces in Kartchner cavern, Arizona, USA. Int J Speleology, 40: 65-77
[153]  Wang F, Lu S, Orcutt B, et al. 2013. Discovering the roles of subsurface microorganisms: Progress and future of deep biosphere investigation. Chin Sci Bull, 58: 456-467
[154]  Wang J S, Jiang G Q, Xiao S H, et al. 2008. Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology, 36: 347-350
[155]  Webby B D, Paris F, Droser M L, et al. 2004. The Great Ordovician Biodiversification Event. New York: Columbia University Press. 1-484
[156]  Weber K A, Achenbach L A, Coates J D. 2006. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol, 4: 752-764
[157]  Wignall P B, Twitchett R J. 1996. Oceanic anoxia and the End Permian mass extinction. Science, 272: 1155-1158
[158]  Xie S, Lai X, Yi Y, et al. 2003. Molecular fossils in a Pleistocene river terrace in southern China related to paleoclimate variation. Org Geochem, 34: 789-797
[159]  Xie S, Pancost R D, Yin H, et al. 2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 434: 494-497
[160]  Xie S, Pancost R D, Huang J, et al. 2007. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. Geology, 35: 1083-1086
[161]  Xie S, Pancost R D, Wang Y, et al. 2010. Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. Geology, 38: 447-450
[162]  Xie S, Pancost R D, Chen L, et al. 2012. Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of Tibetan Plateau in late Miocene. Geology, 40: 291-294
[163]  Xie S, Evershed R P, Huang X, et al. 2013. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China. Geology, 41: 827-830
[164]  Xie W, Wang F, Guo L, et al. 2011. Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. ISME J, 5: 414-426
[165]  Xu X, Zhou Z, Wang X, et al. 2003. Four-winged dinosaurs from China. Nature, 421: 335-340
[166]  Yao T D, Liu Y Q, Kang S C, et al. 2008. Bacteria variabilities in a Tibetan ice core and their relations with climate change. Glob Biogeochem Cycle, 22: 1-11
[167]  Yin H, Feng Q, Lai X, et al. 2007. The protracted Permo-Triassic crisis and the multi-episode mass extinction around the Permian-Triassic boundary. Glob Planet Change, 55: 1-20

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133