全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

金星的重力场与地壳厚度

, PP. 934-944

Keywords: 金星重力场,金星地壳厚度,金星地幔,动力学,大地水准面地形导纳

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用Megellan号探测器确定的重力场和地形模型资料,进一步分析了金星重力场特征,并利用金星地幔对流模型建立了动力学模型的大地水准面地形比,即动力学模型导纳.然后利用该动力学模型导纳,基于2~40阶大地水准面是由与动力学过程相联系的岩石圈下密度异常产生的假定,在扣除重力场和地形的动力学影响的基础上,利用球面Parker公式反演了金星地壳的厚度.结果显示:金星重力场和地形受到金星地幔动力学过程的强烈影响;金星地壳也对地形产生显著影响;金星地壳厚度变化范围主要集中在28~70km,Ishtar高原以及Aphrodite高原西部的Ovda和Thetis区域是金星地壳最厚的区域(大于50km),该区的高地形主要与地壳均衡相关,这与其是古老陆地残留的推测一致.在Beta,Themis,Dione,Eistla,Bell和Lada区域地壳厚度较薄,且与地形无明显相关.特别是在Aphrodite高原东部的Atla和Imdr区域,地壳厚度与周围区域地壳厚度基本一致.这种特征与这些区域的高地形主要是由热柱的动力学过程引起的假定相一致.与包含动力学影响得到的金星地壳厚度相比,扣除动力学影响后得到的金星地壳厚度能更好地反映金星地壳的演化和内部动力学过程.

References

[1]  方剑. 1999. 利用卫星重力资料反演地壳及岩石圈厚度. 地壳形变与地震, 19: 26-31
[2]  高星, 王卫民, 姚振兴. 2005. 中国及邻近地区地壳结构. 地球物理学报, 48: 591-601
[3]  黄建平, 傅容珊, 许萍, 等, 2006. 利用重力和地形观测反演中国及邻区地壳厚度. 地震学报, 28: 250-258
[4]  Anderson F S, Smrekar S E. 2006. Global mapping of crustal and lithospheric thickness on Venus. J Geophys Res, 111: E08006, doi: 10.1029/2004JE002395
[5]  Ansan V, Blondel P. 1996. Formation and evolution of the westernmost corona of Aphrodite Terra, Venus. Planet Space Sci, 44: 833-841
[6]  Arkani-Hamed J. 1996. Analysis and interpretation of the surface topography and gravitational potential of Venus. J Geophys Res, 101: 4711-4724
[7]  Banerdt W B. 1986. Support of long-wavelength loads on Venus and implications for internal structure. J Geophys Res, 91: 403-419
[8]  Black M T, Zuber M T, McAdoo D C. 1991. Comparison of observed and predicted gravity profiles over Aphrodite Terra, Venus. J Geophys Res, 96: 301-315
[9]  Crumpler L S. 1990. Eastern Aphrodite Terra on Venus: Characteristics, structure, and mode of origin. Earth Moon Planets, 50/51: 343-388
[10]  Forsyth D W. 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J Geophys Res, 90: 12623-12632
[11]  Grimm R E. 1994. The deep-structure of Venusian plateau highlands. Icarus, 112: 89-103
[12]  Hager B H, Richards M A. 1989. Long-wavelength variations in Earth′s geoid: Physical models and dynamical implications. Philos Trans R Soc A-Math Phys Eng Sci, 328: 309-327
[13]  Haxby W F, Turcotte D L. 1978. On isostatic geoid anomalies. J Geophys Res, 83: 5473-5478
[14]  Herrick R R, Bills B G, Hall S A. 1989. Variations in effective compensation depth across Aphrodite Terra, Venus. Geophys Res Lett, 16: 543-546
[15]  Huang J S, Yang A, Zhong S J. 2013. Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics. Earth Planet Sci Lett, 362: 207-214
[16]  Ivanov M A, Head J W. 2010. The Lada Terra rise and Quetzalpetlatl Corona: A region of long-lived mantle upwelling and recent volcanic activity on Venus. Planet Space Sci, 58: 1880-1894
[17]  Kiefer W S, Hager B H. 1991. A mantle plume model for the equaorial highlands of Venus. J Geophys Res, 96: 20947-20966
[18]  Kiefer W S, Richards M A, Hager B H. 1986. A dynamic model of Venus’s gravity field. Geophys Res Lett, 13: 14-17
[19]  Konopliv A S, Banerdt W B, Sjogren W L. 1999. Venus gravity: 180th degree and order model. Icarus, 139: 3-18
[20]  Kucinskas A B, Turcotte D L. 1994. Isostatic compensation of equatorial highlands on Venus. Icarus, 112: 104-116
[21]  Kucinskas A B, Turcotte D L, ArkaniHamed J. 1996. Isostatic compensation of Ishtar Terra, Venus. J Geophys Res, 101: 4725-4736
[22]  Leftwich T E, von Frese R R B, Kim H R, et al. 1999. Crustal analysis of Venus from Magellan satellite observations at Atalanta Planitia, Beta Regio, and Thetis Regio. J Geophys Res, 104: 8441-8462
[23]  Lemoine F G, Kenyon S C, Factor J K, et al. 1998. The development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA)Geopotential Model EGM96, NASA Goddard Space Flight Center. NASA/TP-1998-206861, Greenbelt, MD 20771, USA
[24]  Mckenzie D. 1994. The Relationship between topography and gravity on Earth and Venus. Icarus, 112: 55-88
[25]  Mooney W D, Laske G, Masters T G. 1998. CRUST 5.1: A global crustal model at 5°×5°. J Geophys Res, 103: 727-747
[26]  Ockendon J R, Turcotte D L. 1977. On the gravitational potential and field anomalies due to thin mass layers. Geophys J R Astr Soc, 48: 479-492
[27]  Panasyuk S V, Hager B H. 2000. Models of isostatic and dynamic topography, geoid anomalies, and their uncertainties. J Geophys Res, 105: 28199-28209
[28]  Pari G. 2001. Crust 5.1-based inference of the Earth′s dynamic surface topography: Geodynamic implications. Geophys J Int, 144: 501-516
[29]  Parker R L. 1972. The rapid calculation of potential anomalies. Geophys J Roy Astr Soc, 31: 447-455
[30]  Pauer M, Fleming K, ?adek O. 2006. Modeling the dynamic component of the geoid and topography of Venus. J Geophys Res, 111: E11012, doi: 10.1029/2005JE002511
[31]  Rappaport N J, Konopliv A S, Kucinskas A B, et al. 1999. An improved 360 degree and order model of Venus topography. Icarus, 139: 19-31
[32]  Ricard Y, Fleitout L, Froidevaux C. 1984. Geoid heights and lithospheric stresses for a dynamic Earth. Ann Geophys, 2: 267-286
[33]  Richards M A, Hager B H. 1984. Geoid anomalies in a dynamic Earth. J Geophys Res, 89: 5987-6002
[34]  Schubert G, Turcotte D L, Olson P. 2001. Mantle Convection in the Earth and Planets. Cambridge: Cambridge University Press
[35]  Simons F J, Dahlen F A, Wieczorek M A. 2006. Spatiospectral concentration on a sphere. Siam Rev, 48: 504-536
[36]  Tenzer R, Hamayun K, Vajda P. 2009. Global maps of the CRUST 2.0 crustal components stripped gravity disturbances. J Geophys Res, 114: B05408, doi: 10.1029/2008JB006016
[37]  Turcotte D L, Willemann R J, Haxby W F, et al. 1981. Role of membrane stresses in the support of planetary topography. J Geophys Res, 86: 3951-3959
[38]  Vezolainen A V, Solomatov V S, Basilevsky A T, et al. 2004. Uplift of Beta Regio: Three-dimensional models. J Geophys Res, 109: E08007, doi: 10.1029/2004JE002259
[39]  Wieczorek M A. 2007. The gravity and topography of The Terrestrial Planets. Treatise on Geophysics, 10: 165-206
[40]  Wieczorek M A, Phillips R J. 1997. The structure and compensation of the lunar highland crust. J Geophys Res, 102: 10933-10943
[41]  Wieczorek M A, Phillips R J. 1998. Potential anomalies on a sphere: Applications to the thickness of the lunar crust. J Geophys Res, 103: 1715-1724
[42]  Wieczorek M A, Simons F J. 2005. Localized spectral analysis on the sphere. Geophys J Int, 162: 655-675
[43]  Willemann R J, Turcotte D L. 1981. Support of topographic and other loads on the moon and on the terrestrial planets. In: Proceedings of the Lunar and Planetary Science Conference, 12B: 837-851
[44]  Simons M. 1996. Localization of Gravity and Topography: Constraints on the Tectonics and Mantle Dynamics of Earth and Venus. Doctoral Dissertation. Cambridge: Massachusetts Institute of Technology
[45]  Simons M, Hager B H, Solomon S C. 1994. Global variations in the geoid/topography admittance of Venus. Science, 264: 798-803
[46]  Simons M, Solomon S C, Hager B H. 1997. Localization of gravity and topography: Constraints on the tectonics and mantle dynamics of Venus. Geophys J Int, 131: 24-44
[47]  Smrekar S E, Brown N. 2012. Lada Terra: A ‘new’ hotspot on Venus. In: Abstract P11D-1846 Presented at 2012 Fall Meeting. San Francisco
[48]  Smrekar S E, Phillips R J. 1991. Venusian highlands: Geoid to topography ratios and their implications. Earth Planet Sci Lett, 107: 582-597
[49]  Smrekar S E, Stofan E R, Mueller N, et al. 2010. Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science, 328: 605-608
[50]  Solomon S C, Smrekar S E, Bindschadler D L, et al. 1992. Venus tectonics: An overview of Magellan observations. J Geophys Res, 97: 13119-13255
[51]  Steinberger B, Werner S C, Torsvik T H. 2010. Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars. Icarus, 207: 564-577
[52]  Stofan E R, Smrekar S E, Bindschadler D L, et al. 1995. Large topographic rises on Venus: Implications for mantle upwelling. J Geophys Res, 100: 23317-23327

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133