全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青藏高原羌塘中部变玄武岩锆石SHRIMP年代学及Nd-Pb同位素特征

, PP. 872-883

Keywords: 西藏羌塘地区,变玄武岩,锆石U-Pb年龄,特提斯洋,Nd-Pb同位素

Full-Text   Cite this paper   Add to My Lib

Abstract:

?羌塘中部双湖地区齐陇乌如沟出露一套面积较小的变质基性岩,岩性为变玄武岩和含石榴石斜长角闪岩,通过SHRIMP分析获得该变玄武岩的锆石U/Pb年龄为(463.3±4.7)Ma,表明该火山岩的形成时代为中奥陶世.该年龄值与羌塘地块桃形湖和果干加年山蛇绿岩中的变质基性岩一致.该套火山岩具有与N-MORB相似的地球化学特征,推测其可能为蛇绿岩的组分,代表了原特提斯洋消亡的残迹,说明原特提斯洋盆在龙木错-双湖缝合带的形成时代最早可以追溯到中奥陶世.同位素地球化学研究表明,岩浆源区具有亏损地幔(DM)和富集地幔(EMII)地幔端元的混合特征并具有Dupal异常,而Dupal异常与雅鲁藏布江缝合带所代表的新特提斯洋、昌宁-孟连缝合带所代表的古特提斯洋及三江地区古特提斯洋Dupal异常相似,说明它们继承了原特提斯洋地幔域的属性,龙木错-双湖缝合带可能代表了冈瓦纳大陆的北界.

References

[1]  翟庆国, 王军, 李才, 等. 2010. 青藏高原羌塘中部中奥陶世变质堆晶辉长岩锆石SHRIMP年代学及Hf同位素特征. 中国科学: 地球科学, 40: 565-573
[2]  张旗, 周德进, 李秀云, 等. 1995. 云南双沟蛇绿岩的特征和成因. 岩石学报, 11(增刊): 190-202
[3]  周肃, 莫宣学, Mahoney J J, 等. 2001. 西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb、Nd同位素特征. 科学通报, 46: 1387-1390
[4]  Acharyya S K. 2000. Break up of Australia-India-Madagascar block,opening of the India ocean and continental accretion in southeast Asia with social reference to the characteristics of the Peri-Indian collision zones. Gondwana Res, 3: 425-443
[5]  Dupre B, Allegre C J. 1983. Pb-Sr isotope variation in Indian ocean basalts and mixing phenomena. Nature, 303: 142-146
[6]  Edwards C, Menzies M, Thirlwall M. 1991. Evidence from Muriah, Indonesia, for the interplay of supra-subduction zone and intraplate processes in the geneis of potassic magmas. J Petrol, 32: 555-592
[7]  Glazner A F, Farmer G L. 1992. Production of isotopic variability in continental basalts by cryptic crustal contamination. Science, 255: 72-74
[8]  Hamelin B, Dupre B, Alleger C J. 1986. Pb-Sr-Nd isotopic data of Indian ocean ridge: New evidence of large-scale mapping of mantle heterogeneities. Earth Planet Sci Lett, 76: 288-298
[9]  Hart S R. 1984. A large-scale isotope anomaly in the southern hemisphere mantle. Nature, 309: 753-757
[10]  Hart S R. 1988. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies. Earth Planet Sci Lett, 90: 273-296
[11]  Hsü K J, Pan G T, Sengor A M C, et al. 1995. Tectonic evolution of the Tibetan Plateau: A working hypothesis based on the archipelago model of orogenesis. Int Geol Rev, 37: 473-508
[12]  Langmuir C H, Bender J F, Bence A E, et al. 1997. Petrogenesis of basalts form the famous area: Mid-Atlantic ridge. Earth Plane Sci Lett, 36: 133-156
[13]  Ludwig K R. 2003. User’s manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. California: Berkeley Geochronology Center. 41-70
[14]  Mahoney J, Frei R, Tejadal M, et al. 1998. Tracing the Indian ocean mantle domain through time: Isotopic results from old west Indian, east Tethyan, and south Pacific seafloor. J Petrol, 39: 1285-1306
[15]  Mertz D F, Devey C W, Todt W, et al. 1991. Sr-Nd-Pb isotope evidence against plume-asthenosphere mixing north of Iceland. Earth Planet Sci Lett, 107: 243-255
[16]  Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci, 23: 1073-1109
[17]  Rollinson H R. 1993. Using geochemical data: Evaluation, presentation, interpretation. London: Longman Group UK Ltd. 352
[18]  Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders A D, Norry M, eds. Magmatism in the Ocean Basins. J Geol Soc Special Publ, 42: 313-345
[19]  Weis D, Frey F. 1996. Role of the Kerguelen plume in generating the eastern Indian ocean seafloor. J Geophys Res, 101: 13841-13849
[20]  Williams I S, Clasesson S. 1987. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss form the Seve Nappers, Scandinavian Caledonides. II: Ion microprobe zircon U-Th-Pb. Contrib Mineral Petrol, 97: 205-217
[21]  Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol, 20: 325-343
[22]  Xu J F, Castillo P R, Li X H, et al. 2002. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: Implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean. Earth Planet Sci Lett, 198: 323-337
[23]  Xu J F, Castillo P R. 2004. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: Implications for the origin of the Indian Ocean mantle domain. Tectonophysics, 393: 9-27
[24]  Zhu D C, Zhao Z D, Niu Y L, et al. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res, 23: 1429-1454
[25]  Zhang S Q, Mahoney J J, Mo X X, et al. 2005. Evidence for a widespread Tethyan upper mantle with Indian-ocean-type isotopic characteristics. J Petrol, 46: 1-30及邻区大地构造单元初步划分. 地质通报, 21: 701-707
[26]  潘桂棠, 王立全, 朱弟成, 等. 2004a. 青藏高原区域地质调查中几个重大科学问题思考. 地质通报, 23: 12-19
[27]  潘桂棠, 朱弟成, 王立全, 等. 2004b. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11: 371-382
[28]  钱定宇. 1994. 西藏石炭-二叠纪的生物群和气候及其对冈瓦纳北界的含义. 西藏地质, 18: 26-42
[29]  宋彪, 张玉海, 万渝生, 等. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊): 26-30
[30]  谭富文, 王剑, 付修根, 等. 2009. 藏北羌塘盆地基底变质岩的锆石SHRIMP年龄及其地质意义. 岩石学报, 25: 139-146
[31]  王成善, 胡承祖, 吴瑞忠, 等. 1987. 西藏北部查桑-茶布裂谷的发现及其意义. 成都地质学院报, 14: 33-45
[32]  王国芝, 王成善. 2001. 西藏羌塘基底变质岩系的解体和时代厘定. 中国科学D辑: 地球科学, 31(增刊): 77-82
[33]  魏启荣, 沈上越, 莫宣学, 等. 2003. 三江中段Dupal同位素异常的识别及其意义. 地质地球化学, 31: 36-41
[34]  王剑, 谭富文, 李亚林, 等. 2004. 青藏高原重点沉积盆地油气资源潜力分析. 北京: 地质出版社. 1-65
[35]  王立全, 潘桂棠, 朱弟成, 等. 2006. 藏北双湖鄂柔地区变质岩和玄武岩的40Ar/39Ar年龄及其意义. 地学前缘, 13: 221-231
[36]  王立全, 潘桂棠, 李才, 等. 2008. 藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP年龄——兼论原-古特提斯洋的演化. 地质通报, 27: 2045-2056
[37]  鲍佩声, 肖序常, 王军, 等. 1999. 西藏中部双湖地区蓝片岩带及其构造涵义. 地质学报, 73: 303-315
[38]  邓万明, 尹集祥, 呙中平. 1996. 羌塘茶布-双湖地区基性超基性岩、火山岩研究. 中国科学D辑: 地球科学, 26: 296-301
[39]  邓万明. 1996. 青藏高原古特提斯蛇绿岩带与“冈瓦纳古陆北界”. 见: 张旗, 主编. 蛇绿岩与地球动力学研讨会论文集. 北京: 地质出版社. 172-176
[40]  邓希光, 丁林, 刘小汉, 等. 2002. 青藏高原羌塘中部蓝片岩的地球化学特征及其构造意义. 岩石学报, 18: 517-525
[41]  和钟铧, 王天武, 李才, 等. 2000. 对藏北羌塘地体阿木群的新认识. 世界地质, 19: 1-7
[42]  候青叶, 赵志丹, 张宏飞, 等. 2005. 北祁连玉石沟蛇绿岩印度洋MORB型同位素组成特征及其地质意义. 中国科学D辑: 地球科学, 35: 710-719
[43]  黄汲清, 陈国铭, 陈炳蔚. 1984. 特提斯-喜马拉雅构造域初步分析. 地质学报, 58: 1-17
[44]  黄继钧. 2001a. 羌塘盆地基底构造特征. 地质学报, 75: 333-337
[45]  黄继钧. 2001b. 藏北羌塘盆地构造特征及演化. 中国区域地质, 20: 178-186
[46]  黄继钧, 伊海生, 林金辉. 2003. 羌塘盆地构造特征及油气远景初步分析. 地质科学, 39: 1-10
[47]  赖绍聪, 秦江峰, 李学军, 等. 2010. 昌宁-孟连缝合带干龙塘-弄巴蛇绿岩地球化学及Sr-Nd-Pb同位素组成研究. 岩石学报, 26: 3195-3205
[48]  李才. 1987. 龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界. 长春地质学院报, 17: 155-166
[49]  李才, 程立人, 胡克, 等. 1995. 西藏龙木错-双湖古特提斯缝合带研究. 北京: 地质出版社. 1-45
[50]  李才, 王天武, 杨德明, 等. 2000. 西藏羌塘中部都古尔花岗质片麻岩同位素年代学研究. 长春科技大学学报, 30: 105-109
[51]  李才, 王天武, 杨德明, 等. 2001. 西藏羌塘中央隆起区物质组成与构造演化. 长春科技大学报, 31: 25-31
[52]  李才. 2003. 羌塘基底质疑. 地质论评, 49: 5-9
[53]  李才, 翟庆国, 程立人, 等. 2005. 青藏高原羌塘地区几个关键地质问题的思考. 地质通报, 24: 295-301
[54]  李才. 2006. 龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界. 地学前缘, 13: 136-147
[55]  李才. 2008. 龙木错-双湖-澜沧江板块缝合带研究二十年. 地质论评, 54: 136-147
[56]  李曰俊, 吴浩若, 李红生, 等. 1997. 藏北阿木岗群、查桑群和鲁谷组放射虫的发现及有关问题讨论. 地质评论, 43: 250-256
[57]  李永铁, 罗建宁, 卢辉楠, 等. 2001. 青藏高原地层. 北京: 地质出版社. 10-30
[58]  鲁兵, 刘池阳, 刘忠, 等. 2001. 羌塘盆地的基底组成、结构特征及其意义. 地震地质, 23: 581-587
[59]  路远发. 2004. Geokit: 一个用VBA构建的地球化学工具软件包. 地球化学, 33: 459-464
[60]  牛晓露, 赵志丹, 莫宣学, 等. 2006. 西藏日喀则地区德村-昂仁蛇绿岩内基性岩的元素与Sr-Nd-Pb同位素地球化学及其揭示的特提斯地幔域特征. 岩石学报, 22: 2875-2888
[61]  潘桂堂, 陈智梁, 李兴振, 等. 1997. 东特提斯地质构造形成演化. 北京: 地质出版社. 121-128
[62]  潘桂棠, 李兴振, 王立全, 等. 2002. 青藏高原及邻区大地构造单元初步划分. 地质通报, 21: 701-707
[63]  潘桂棠, 王立全, 朱弟成, 等. 2004a. 青藏高原区域地质调查中几个重大科学问题思考. 地质通报, 23: 12-19
[64]  潘桂棠, 朱弟成, 王立全, 等. 2004b. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11: 371-382
[65]  钱定宇. 1994. 西藏石炭-二叠纪的生物群和气候及其对冈瓦纳北界的含义. 西藏地质, 18: 26-42
[66]  宋彪, 张玉海, 万渝生, 等. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊): 26-30
[67]  谭富文, 王剑, 付修根, 等. 2009. 藏北羌塘盆地基底变质岩的锆石SHRIMP年龄及其地质意义. 岩石学报, 25: 139-146
[68]  王成善, 胡承祖, 吴瑞忠, 等. 1987. 西藏北部查桑-茶布裂谷的发现及其意义. 成都地质学院报, 14: 33-45
[69]  王国芝, 王成善. 2001. 西藏羌塘基底变质岩系的解体和时代厘定. 中国科学D辑: 地球科学, 31(增刊): 77-82
[70]  魏启荣, 沈上越, 莫宣学, 等. 2003. 三江中段Dupal同位素异常的识别及其意义. 地质地球化学, 31: 36-41
[71]  王剑, 谭富文, 李亚林, 等. 2004. 青藏高原重点沉积盆地油气资源潜力分析. 北京: 地质出版社. 1-65
[72]  王立全, 潘桂棠, 朱弟成, 等. 2006. 藏北双湖鄂柔地区变质岩和玄武岩的40Ar/39Ar年龄及其意义. 地学前缘, 13: 221-231
[73]  王立全, 潘桂棠, 李才, 等. 2008. 藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP年龄——兼论原-古特提斯洋的演化. 地质通报, 27: 2045-2056
[74]  吴瑞忠, 胡承祖, 王成善, 等. 1986. 藏北羌塘地区地层系统. 见: 地质矿产部青藏高原地质文集编委会, 编. 青藏高原地质文集(9). 北京: 地质出版社. 1-32
[75]  许继峰, 韩吟文. 1996. 秦岭古MORB型岩石的高放射性成因铅同位素组成: 特提斯型古洋幔存在的证据. 中国科学D辑: 地球科学, 26(增刊): 34-41
[76]  刑光福, 沈渭洲, 王德滋, 等. 1997. 南极乔治王岛-中新生代岩浆岩Sr-Nd-Pb同位素组成及源区特征. 岩石学报, 13: 473-487
[77]  尹集祥. 1997. 青藏高原及邻区冈瓦纳相地层地质学. 北京: 科学出版社. 1-121
[78]  苑守成, 于国明, 田黔宁. 2007. 青藏高原羌塘盆地重磁剖面异常与基底构造特征. 地质通报, 26: 703-709
[79]  翟庆国, 李才, 黄小鹏. 2007. 西藏羌塘中部古特提斯洋残片?—来自果干加年山变质基性岩地球化学证据. 中国科学D辑: 地球科学, 37: 866-872
[80]  Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol, 18: 423-439
[81]  吴瑞忠, 胡承祖, 王成善, 等. 1986. 藏北羌塘地区地层系统. 见: 地质矿产部青藏高原地质文集编委会, 编. 青藏高原地质文集(9). 北京: 地质出版社. 1-32
[82]  许继峰, 韩吟文. 1996. 秦岭古MORB型岩石的高放射性成因铅同位素组成: 特提斯型古洋幔存在的证据. 中国科学D辑: 地球科学, 26(增刊): 34-41
[83]  刑光福, 沈渭洲, 王德滋, 等. 1997. 南极乔治王岛-中新生代岩浆岩Sr-Nd-Pb同位素组成及源区特征. 岩石学报, 13: 473-487
[84]  尹集祥. 1997. 青藏高原及邻区冈瓦纳相地层地质学. 北京: 科学出版社. 1-121
[85]  苑守成, 于国明, 田黔宁. 2007. 青藏高原羌塘盆地重磁剖面异常与基底构造特征. 地质通报, 26: 703-709
[86]  翟庆国, 李才, 黄小鹏. 2007. 西藏羌塘中部古特提斯洋残片?—来自果干加年山变质基性岩地球化学证据. 中国科学D辑: 地球科学, 37: 866-872
[87]  翟庆国, 王军, 李才, 等. 2010. 青藏高原羌塘中部中奥陶世变质堆晶辉长岩锆石SHRIMP年代学及Hf同位素特征. 中国科学: 地球科学, 40: 565-573
[88]  张旗, 周德进, 李秀云, 等. 1995. 云南双沟蛇绿岩的特征和成因. 岩石学报, 11(增刊): 190-202
[89]  周肃, 莫宣学, Mahoney J J, 等. 2001. 西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb、Nd同位素特征. 科学通报, 46: 1387-1390
[90]  Acharyya S K. 2000. Break up of Australia-India-Madagascar block,opening of the India ocean and continental accretion in southeast Asia with social reference to the characteristics of the Peri-Indian collision zones. Gondwana Res, 3: 425-443
[91]  Dupre B, Allegre C J. 1983. Pb-Sr isotope variation in Indian ocean basalts and mixing phenomena. Nature, 303: 142-146
[92]  Edwards C, Menzies M, Thirlwall M. 1991. Evidence from Muriah, Indonesia, for the interplay of supra-subduction zone and intraplate processes in the geneis of potassic magmas. J Petrol, 32: 555-592
[93]  Glazner A F, Farmer G L. 1992. Production of isotopic variability in continental basalts by cryptic crustal contamination. Science, 255: 72-74
[94]  Hamelin B, Dupre B, Alleger C J. 1986. Pb-Sr-Nd isotopic data of Indian ocean ridge: New evidence of large-scale mapping of mantle heterogeneities. Earth Planet Sci Lett, 76: 288-298
[95]  Hart S R. 1984. A large-scale isotope anomaly in the southern hemisphere mantle. Nature, 309: 753-757
[96]  Hart S R. 1988. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies. Earth Planet Sci Lett, 90: 273-296
[97]  Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol, 18: 423-439
[98]  Hsü K J, Pan G T, Sengor A M C, et al. 1995. Tectonic evolution of the Tibetan Plateau: A working hypothesis based on the archipelago model of orogenesis. Int Geol Rev, 37: 473-508
[99]  Langmuir C H, Bender J F, Bence A E, et al. 1997. Petrogenesis of basalts form the famous area: Mid-Atlantic ridge. Earth Plane Sci Lett, 36: 133-156
[100]  Ludwig K R. 2003. User’s manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. California: Berkeley Geochronology Center. 41-70
[101]  Mahoney J, Frei R, Tejadal M, et al. 1998. Tracing the Indian ocean mantle domain through time: Isotopic results from old west Indian, east Tethyan, and south Pacific seafloor. J Petrol, 39: 1285-1306
[102]  Mertz D F, Devey C W, Todt W, et al. 1991. Sr-Nd-Pb isotope evidence against plume-asthenosphere mixing north of Iceland. Earth Planet Sci Lett, 107: 243-255
[103]  Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci, 23: 1073-1109
[104]  Rollinson H R. 1993. Using geochemical data: Evaluation, presentation, interpretation. London: Longman Group UK Ltd. 352
[105]  Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders A D, Norry M, eds. Magmatism in the Ocean Basins. J Geol Soc Special Publ, 42: 313-345
[106]  Weis D, Frey F. 1996. Role of the Kerguelen plume in generating the eastern Indian ocean seafloor. J Geophys Res, 101: 13841-13849
[107]  Williams I S, Clasesson S. 1987. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss form the Seve Nappers, Scandinavian Caledonides. II: Ion microprobe zircon U-Th-Pb. Contrib Mineral Petrol, 97: 205-217
[108]  Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol, 20: 325-343
[109]  Xu J F, Castillo P R, Li X H, et al. 2002. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: Implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean. Earth Planet Sci Lett, 198: 323-337
[110]  Xu J F, Castillo P R. 2004. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: Implications for the origin of the Indian Ocean mantle domain. Tectonophysics, 393: 9-27
[111]  Zhu D C, Zhao Z D, Niu Y L, et al. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res, 23: 1429-1454
[112]  Zhang S Q, Mahoney J J, Mo X X, et al. 2005. Evidence for a widespread Tethyan upper mantle with Indian-ocean-type isotopic characteristics. J Petrol, 46: 1-30

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133