全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

华南寒武纪早期海洋化学状态的时空波动

, PP. 851-863

Keywords: 华南,寒武纪早期,海洋化学,缺氧硫化寒武纪生命大爆发

Full-Text   Cite this paper   Add to My Lib

Abstract:

?继新元古代埃迪卡拉纪真核生物辐射之后,寒武纪生命大爆发建立了现今动物门类和海洋生态系统的总体格架.本文系统研究了目前华南寒武系纽芬兰统-第二统南皋阶Fe-S-C海洋化学数据在时间和空间(近岸-远洋)上的波动特征,发现寒武纪早期表层海洋虽已氧化,但深部海洋仍旧广泛缺氧铁化,硫化水体可能仅动态出现在陆架缺氧区域且受到硫酸盐供给的重要控制.伴随海侵、海退和硫酸盐输入等关键地球化学要素的波动,华南寒武纪早期这种海洋化学状态的空间结构展现了阶段性演化特征,并与这一时期生物辐射、“灭绝”的空间差异性和阶段性一致.生物与水化学的相关性还进一步表明早期动物可能具有较好地适应低氧环境的生存能力,但水体的硫化对其却是致命的.这一观点可很好地解释梅树村阶Ni-Mo富集层沉积时期陆架地区小壳动物群和外陆架-斜坡相海绵动物的消失.因此,海洋化学条件的时空波动及其效应很可能是寒武纪早期生命出现阶段式“灭绝”和辐射的关键原因之一.

References

[1]  常华进, 储雪蕾, 冯连君, 等. 2010. 桂北老堡组硅质岩中的铁组分: 指示缺氧含铁的盆地深水古环境. 科学通报, 55: 2010-2017
[2]  陈平. 1984. 湖北宜昌计家坡下寒武统底部小壳化石的发现及其意义. 见: 郝治纯, 主编. 地层古生物论文集(第十三辑). 北京: 地质出版社. 49-64
[3]  丁莲芳, 李勇, 陈会鑫. 1992. 湖北宜昌震旦系-寒武系界限地层Micrhystridium regulare化石的发现及其地层意义. 微体古生物学报, 9: 303-309
[4]  罗惠麟, 蒋志文, 武希彻, 等. 1984. 中国云南晋宁梅树村震旦系-寒武系界限层型剖面. 昆明: 云南人民出版社. 154
[5]  朱茂炎. 2010. 动物的起源和寒武纪动物大爆发: 来自中国化石的证据. 古生物学报, 49: 267-289
[6]  朱日祥, 李献华, 侯先光, 等. 2009. 梅树村剖面离子探针锆石U-Pb年代学: 对前寒武纪-寒武纪界限的年代制约. 中国科学D辑: 地球科学, 39: 1105-1111
[7]  Algeo T J, Chen Z Q, Fraiser M L, et al. 2011. Terrestrial-marine teleconnections in the collapse and rebuilding of early Triassic marines ecosystem. Palaeogeogr Palaeoclimatol Palaeoecol, 308: 1-11
[8]  Bengston S, Zhao Y. 1992. Predatorial borings in late Precambrian mineralized exoskeletons. Science, 257: 367-369
[9]  Canfield D E, Poulton S W, Knoll A H, et al. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321: 949-952
[10]  Canfield D E, Stewart F J, Thamdrup B, et al. 2010. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science, 330: 1375-1378
[11]  Chang H J, Chu X L, Feng L J, et al. 2012. Progressive oxidation of anoxic and ferruginous deep-water during deposition of the terminal Ediacaran Laobao Formation in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 321-322: 80-87
[12]  Chen D Z, Wang J G, Qing H R, et al. 2009. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, Geochronological and stable isotopeic constraints. Chem Geol, 258: 168-181
[13]  Cohen P A, Knoll A H, Kodner R B. 2009. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proc Natl Acad Sci USA, 106: 6519-6524
[14]  Compston W, Zhang Z, Cooper J A, et al. 2008. Further SHRIMP geochronology on the early Cambrian of South China. Am J Sci, 308: 399-420
[15]  Conway N W, Kennicutt M C, Van Dover C L. 1994. Stable Isotopes in the Study of Marine Chemosynthetic-based Food Webs. In: Lajtha K, Michener R, eds. Stable Isotopes in Ecology and Environmental Science. Oxford: Blackwell Scientific Publications. 158-186
[16]  Cremonese L, Zhou G S, Struck U, et al. 2013. Marine biogeochemical cycling during the early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan sections, South China. Precambrian Res, 225: 148-165
[17]  Gill B C, Lyons T W, Young S A, et al. 2011. Geochemistry evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469: 80-83
[18]  Goldberg T, Strauss H, Guo Q J, et al. 2007. Reconstructing marine redox conditions for the early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 175-193
[19]  Guo J F, Li Y, Han J, et al. 2008. Fossil association from the lower Cambrian Yanjiahe formation in the Yangtze Gorges area, Hubei, South China. Acta Geol Sin, 82: 1124-1132
[20]  Guo Q J, Shields G A, Liu C Q, et al. 2007a. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 194-216
[21]  Guo Q J, Strauss H, Liu C Q, et al. 2007b. Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 140-157
[22]  Guo Q J, Strauss H, Liu C Q, et al. 2010. A negative carbon isotope excursion defines the boundary from Cambrian series 2 to Cambrian series 3 on the Yangtze Platform, South China. Palaeogeogr Palaeoclimatol Palaeoecol, 285: 143-151
[23]  Jiang G Q, Wang X Q, Shi X Y, et al. 2012. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca.542-520 Ma) Yangtze platform. Earth Planet Sci Lett, 317-318: 96-110
[24]  Jonston D T, Poulton S W, Dehler C, et al. 2010. An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth Planet Sci Lett, 290: 64-73
[25]  Knoll A H, Carroll S B. 1999. Early animal evolution: Emerging views from comparative biology and geology. Science, 284: 2129-2137
[26]  Li C, Love G D, Lyon T W, et al. 2010. A stratified redox model for the Ediacaran ocean. Science, 328: 80-83
[27]  Li C, Love G D, Lyons T W, et al. 2012. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth Planet Sci Lett, 331-332: 246-256
[28]  Li G X, Xiao S H. 2004. Tannuolina and Micrina (Tannuolinidae) from the lower Cambrian of eastern Yunnan, South China, and their scleritome reconstruction. J Paleont, 78: 900-913
[29]  Lin J P, Zhao Y L, Rahman I A, et al. 2010. Bioturbation in Burgess Shale-type Lagerst?tten—Case study of trace fossil-body fossil association from the Kaili Biota (Cambrian Series 3), Guizhou, China. Palaeogeogr Palaeoclimatol Palaeoecol, 292: 245-256
[30]  Logan G A, Hayes J M, Hieshima G B, et al. 1995. Terminal Proterozoic reorganization of biological process. Nature, 376: 53-56
[31]  Loyd S J, Marenco P J, Hagadon J W, et al. 2012. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: Insights from carbonates of Northwestern Mexico and Eastern California. Earth Planet Sci Lett, 339-340: 79-94
[32]  Lyons T W, Severmann S. 2006. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim Cosmochim Acta, 70: 5698-5722
[33]  Marshall C R. 2006. Explain the Cambrian “explosion” of animals. Annu Rev Earth planet Sci, 34: 355-384
[34]  McFadden K A, Huang J, Chu X L, et al. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 105: 3197-3202
[35]  Och L M, Shields-Zhou G A, Poulton S W, et al. 2013. Redox change in early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambrian Res, 225: 166-189
[36]  Planavsky N J, McGoldrick P, Scott C T, et al. 2011. Widespread iron-rich conditions in the middle-Proterozoic ocean. Nature, 467: 1088-1090
[37]  Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geosci, 3: 486-490
[38]  Poulton S W, Canfield D E. 2011. Ferruginous conditions: A dominant feature of the ocean through earth history. Elements, 7: 107-112
[39]  Raiswell R, Newton R, Bottrell S H, et al. 2008. Turbidite depositional influences on the diagenesis of Beecher’s Trilobite Bed and the Hunsrück Slate: Sites of soft tissue pyritization. Am J Sci, 308: 105-129
[40]  Scott C, Lyons T W, Bekker A, et al. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456-459
[41]  Shen Y A, Knoll A H, Walter M R. 2003. Evidence for low sulfate and anoxia in a mid-Proterozoic marine basin. Nature, 423: 632-635
[42]  Shu D. 2008. Cambrian explosion: Birth of tree of animals. Gondwana Res, 14: 219-240
[43]  Steiner M, Walls E, Erdtmann B D, et al. 2001. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 220: 129-152
[44]  Steiner M, Li G, Qian Y, et al. 2007. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeogr Palaeoclimatol Palaeoecol, 254: 67-99
[45]  Summons R E, Jahnke L L, Roksandic Z. 1994. Carbon isotope fractionation in lipids from methanotrophic bacteria: Relevance for interpretations of the geochemical record of biomarkers. Geochim Cosmochim Acta, 58: 2853-2863
[46]  Summons R E, Franzmann P D, Nichols P D. 1998. Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org Geochem, 28: 465-475
[47]  Wang J, Li Z X. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Res, 122: 141-158
[48]  Wang J G, Chen D Z, Yan D T, et al. 2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chem Geol, 306-307: 129-138
[49]  Wang X Q, Shi X Y, Jiang G Q, et al. 2012. New U-Pb age from the basal Niutitang Formation in South China: Implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran-Cambrian transition. J Asian Earth Sci, 48: 1-8
[50]  Wen H J, Carignan J, Zhang Y X, et al. 2011. Molybdenum isotopic records across the Precambrian-Cambrian boundary. Geology, 39: 775-778
[51]  Wille M, N?gle T F, Lehmann B, et al. 2008. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature, 453: 767-769
[52]  Yang A H, Zhu M Y, Zhang J M, et al. 2003. Early Cambrian eodiscoid trilobites of the Yangtze Platform and their stratigraphic implications. Prog Nat Sci, 13: 862-866
[53]  Zhao Y L, Yu Y Y, Yuan J L, et al. 2001. Cambrian stratigraphy at Huanglian, Guizhou Province, China: Reference section for bases of the Nangaoan and Duyunian stages. In: Pen S C, et al, eds. Cambrian system of South China. Palaeoworld, 13: 172-181
[54]  Zhu M Y, Zhang J M, Li G X. 2001. Sedimentary environments of the Early Cambrian Chengjiang biota: Sedimentology of the Yu’anshan Formation in Chengjiang County, Eastern Yunnan. Acta Palaeontol Sin, 40(Suppl): 80-105
[55]  Zhu M Y, Zhang J M, Steiner M, et al. 2003. Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform: An integrated approach. Prog Nat Sci, 13: 951-960
[56]  Zhu M Y, Strauss H, Shields G A. 2007. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 1-6
[57]  Guo Q J, Strauss H, Zhu M Y, et al. 2013. High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian transition. Precambrian Res, 225: 209-217
[58]  Hammarlund E U, Dahl T W, Harper D A T, et al. 2012. A sulfidic driver for the end-Ordovician mass extinction. Earth Planet Sci Lett, 331-332: 128-139
[59]  Ishikawa T, Ueno Y, Shu D G, et al. 2013. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: High-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China. Precambrian Res, 225: 190-208

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133