Algeo T J, Chen Z Q, Fraiser M L, et al. 2011. Terrestrial-marine teleconnections in the collapse and rebuilding of early Triassic marines ecosystem. Palaeogeogr Palaeoclimatol Palaeoecol, 308: 1-11
[8]
Bengston S, Zhao Y. 1992. Predatorial borings in late Precambrian mineralized exoskeletons. Science, 257: 367-369
[9]
Canfield D E, Poulton S W, Knoll A H, et al. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321: 949-952
[10]
Canfield D E, Stewart F J, Thamdrup B, et al. 2010. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science, 330: 1375-1378
[11]
Chang H J, Chu X L, Feng L J, et al. 2012. Progressive oxidation of anoxic and ferruginous deep-water during deposition of the terminal Ediacaran Laobao Formation in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 321-322: 80-87
[12]
Chen D Z, Wang J G, Qing H R, et al. 2009. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, Geochronological and stable isotopeic constraints. Chem Geol, 258: 168-181
[13]
Cohen P A, Knoll A H, Kodner R B. 2009. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proc Natl Acad Sci USA, 106: 6519-6524
[14]
Compston W, Zhang Z, Cooper J A, et al. 2008. Further SHRIMP geochronology on the early Cambrian of South China. Am J Sci, 308: 399-420
[15]
Conway N W, Kennicutt M C, Van Dover C L. 1994. Stable Isotopes in the Study of Marine Chemosynthetic-based Food Webs. In: Lajtha K, Michener R, eds. Stable Isotopes in Ecology and Environmental Science. Oxford: Blackwell Scientific Publications. 158-186
[16]
Cremonese L, Zhou G S, Struck U, et al. 2013. Marine biogeochemical cycling during the early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan sections, South China. Precambrian Res, 225: 148-165
[17]
Gill B C, Lyons T W, Young S A, et al. 2011. Geochemistry evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469: 80-83
[18]
Goldberg T, Strauss H, Guo Q J, et al. 2007. Reconstructing marine redox conditions for the early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 175-193
[19]
Guo J F, Li Y, Han J, et al. 2008. Fossil association from the lower Cambrian Yanjiahe formation in the Yangtze Gorges area, Hubei, South China. Acta Geol Sin, 82: 1124-1132
[20]
Guo Q J, Shields G A, Liu C Q, et al. 2007a. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 194-216
[21]
Guo Q J, Strauss H, Liu C Q, et al. 2007b. Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 140-157
[22]
Guo Q J, Strauss H, Liu C Q, et al. 2010. A negative carbon isotope excursion defines the boundary from Cambrian series 2 to Cambrian series 3 on the Yangtze Platform, South China. Palaeogeogr Palaeoclimatol Palaeoecol, 285: 143-151
[23]
Jiang G Q, Wang X Q, Shi X Y, et al. 2012. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca.542-520 Ma) Yangtze platform. Earth Planet Sci Lett, 317-318: 96-110
[24]
Jonston D T, Poulton S W, Dehler C, et al. 2010. An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth Planet Sci Lett, 290: 64-73
[25]
Knoll A H, Carroll S B. 1999. Early animal evolution: Emerging views from comparative biology and geology. Science, 284: 2129-2137
[26]
Li C, Love G D, Lyon T W, et al. 2010. A stratified redox model for the Ediacaran ocean. Science, 328: 80-83
[27]
Li C, Love G D, Lyons T W, et al. 2012. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth Planet Sci Lett, 331-332: 246-256
[28]
Li G X, Xiao S H. 2004. Tannuolina and Micrina (Tannuolinidae) from the lower Cambrian of eastern Yunnan, South China, and their scleritome reconstruction. J Paleont, 78: 900-913
[29]
Lin J P, Zhao Y L, Rahman I A, et al. 2010. Bioturbation in Burgess Shale-type Lagerst?tten—Case study of trace fossil-body fossil association from the Kaili Biota (Cambrian Series 3), Guizhou, China. Palaeogeogr Palaeoclimatol Palaeoecol, 292: 245-256
[30]
Logan G A, Hayes J M, Hieshima G B, et al. 1995. Terminal Proterozoic reorganization of biological process. Nature, 376: 53-56
[31]
Loyd S J, Marenco P J, Hagadon J W, et al. 2012. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: Insights from carbonates of Northwestern Mexico and Eastern California. Earth Planet Sci Lett, 339-340: 79-94
[32]
Lyons T W, Severmann S. 2006. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim Cosmochim Acta, 70: 5698-5722
[33]
Marshall C R. 2006. Explain the Cambrian “explosion” of animals. Annu Rev Earth planet Sci, 34: 355-384
[34]
McFadden K A, Huang J, Chu X L, et al. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 105: 3197-3202
[35]
Och L M, Shields-Zhou G A, Poulton S W, et al. 2013. Redox change in early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambrian Res, 225: 166-189
[36]
Planavsky N J, McGoldrick P, Scott C T, et al. 2011. Widespread iron-rich conditions in the middle-Proterozoic ocean. Nature, 467: 1088-1090
[37]
Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geosci, 3: 486-490
[38]
Poulton S W, Canfield D E. 2011. Ferruginous conditions: A dominant feature of the ocean through earth history. Elements, 7: 107-112
[39]
Raiswell R, Newton R, Bottrell S H, et al. 2008. Turbidite depositional influences on the diagenesis of Beecher’s Trilobite Bed and the Hunsrück Slate: Sites of soft tissue pyritization. Am J Sci, 308: 105-129
[40]
Scott C, Lyons T W, Bekker A, et al. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456-459
[41]
Shen Y A, Knoll A H, Walter M R. 2003. Evidence for low sulfate and anoxia in a mid-Proterozoic marine basin. Nature, 423: 632-635
[42]
Shu D. 2008. Cambrian explosion: Birth of tree of animals. Gondwana Res, 14: 219-240
[43]
Steiner M, Walls E, Erdtmann B D, et al. 2001. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr Palaeoclimatol Palaeoecol, 220: 129-152
[44]
Steiner M, Li G, Qian Y, et al. 2007. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeogr Palaeoclimatol Palaeoecol, 254: 67-99
[45]
Summons R E, Jahnke L L, Roksandic Z. 1994. Carbon isotope fractionation in lipids from methanotrophic bacteria: Relevance for interpretations of the geochemical record of biomarkers. Geochim Cosmochim Acta, 58: 2853-2863
[46]
Summons R E, Franzmann P D, Nichols P D. 1998. Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org Geochem, 28: 465-475
[47]
Wang J, Li Z X. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Res, 122: 141-158
[48]
Wang J G, Chen D Z, Yan D T, et al. 2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chem Geol, 306-307: 129-138
[49]
Wang X Q, Shi X Y, Jiang G Q, et al. 2012. New U-Pb age from the basal Niutitang Formation in South China: Implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran-Cambrian transition. J Asian Earth Sci, 48: 1-8
[50]
Wen H J, Carignan J, Zhang Y X, et al. 2011. Molybdenum isotopic records across the Precambrian-Cambrian boundary. Geology, 39: 775-778
[51]
Wille M, N?gle T F, Lehmann B, et al. 2008. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature, 453: 767-769
[52]
Yang A H, Zhu M Y, Zhang J M, et al. 2003. Early Cambrian eodiscoid trilobites of the Yangtze Platform and their stratigraphic implications. Prog Nat Sci, 13: 862-866
[53]
Zhao Y L, Yu Y Y, Yuan J L, et al. 2001. Cambrian stratigraphy at Huanglian, Guizhou Province, China: Reference section for bases of the Nangaoan and Duyunian stages. In: Pen S C, et al, eds. Cambrian system of South China. Palaeoworld, 13: 172-181
[54]
Zhu M Y, Zhang J M, Li G X. 2001. Sedimentary environments of the Early Cambrian Chengjiang biota: Sedimentology of the Yu’anshan Formation in Chengjiang County, Eastern Yunnan. Acta Palaeontol Sin, 40(Suppl): 80-105
[55]
Zhu M Y, Zhang J M, Steiner M, et al. 2003. Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform: An integrated approach. Prog Nat Sci, 13: 951-960
[56]
Zhu M Y, Strauss H, Shields G A. 2007. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 1-6
[57]
Guo Q J, Strauss H, Zhu M Y, et al. 2013. High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian transition. Precambrian Res, 225: 209-217
[58]
Hammarlund E U, Dahl T W, Harper D A T, et al. 2012. A sulfidic driver for the end-Ordovician mass extinction. Earth Planet Sci Lett, 331-332: 128-139
[59]
Ishikawa T, Ueno Y, Shu D G, et al. 2013. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: High-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China. Precambrian Res, 225: 190-208