全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

磁暴期间环电流离子增长与磁尾离子注入的因果时序探测研究

DOI: 10.1007/s11430-015-5121-7, PP. 1553-1568

Keywords: 能量中性原子,环电流,能量粒子,能量离子注入

Full-Text   Cite this paper   Add to My Lib

Abstract:

?TC-2卫星上的中性原子成像仪(NUADU)在2005年5月15日磁暴期间(并伴随有系列亚暴事件)记录了反映环电流离子连续变化的能量中性原子(ENA)图像探测数据.比较由中性原子图像反演的4min时间分辨的环电流离子空间分布与地球同步轨道LANL系列卫星(环绕赤道面~6.6RE)上同步轨道粒子分析仪(LANL-SOPA)原位离子通量探测数据,以及相同高度的同步系列卫星GOES的磁场数据,发现环电流区离子通量增长发生在磁力线尾向拉伸的亚暴增长相阶段,而不是发生在磁场偶极化之后.这一发现挑战了以往的环电流离子注入是磁场偶极化时由磁尾直接注入的概念,但仍需更多的观测实例进一步认证.

References

[1]  Liu W W, Rostoker G. 1995. Energetic ring current particles generated by recurring substorm cycles. J Geophys Res, 100: 21897-21910
[2]  Liu Z X, Escoupet C P, Pu Z Y, et al. 2005. The Double Star mission. Ann Geophys, 23: 2707-2712
[3]  Lu L, McKenna-Lawlor S, Barabash S, et al. 2008. Iterative inversion of global magnetospheric ion distributions using energetic neutral atom (ENA) images recorded by the NUADU/TC2 instrument, Ann Geophy, 26: 1641-1652
[4]  Lu L, McKenna-Lawlor S, Barabash S, et al. 2010. Comparisons between ion distributions retrieved from ENA images of the ring current and contemporaneous, multipoint ion measurements recorded in situ during the major magnetic storm of 15 May 2005. J Geophys Res, 115: A12218
[5]  McKenna-Lawlor S, Balaz J, Barabash S, et al. 2004. The energetic NeUtral Atom Detector Unit (NUADU) for China''s Double Star Mission and its calibration. Nucl Ins Meth A, 503: 311-322
[6]  McKenna-Lawlor S, Lu L, Iannis Dandouras, et al. 2010. Moderate geomagnetic storm (21-22 January 2005) triggered by an outstanding coronal mass ejection viewed via energetic neutral atoms. J Geophys Res, 115, doi: 10. 1029/2009 JA014663
[7]  Peroomian V, Ashour-Abdalla M. 1996. Population of the near-earth magnetotail from the auroral zone. J Geophys Res, 101: 15387-15401
[8]  Sauvaud J A, Winckler J R. 1980. Dynamics of plasma, energetic particles, and fields near synchronous orbit in the nighttime sector during magnetospheric substorms. J Geophys Res, 85: 2043-2056
[9]  Sauvaud J A, Beutier T, Delcourt D. 1996. On the origin of flux dropouts near geosynchronous orbit during the growth pahse of substorms, 1, betatron effects. J Geophys Res, 101: 19911-19919
[10]  Sergeev V A, Shukhtina M A, Rasinkangas R, et al. 1998. Event study of deep energetic particle injections during substorm. J Geophys Res, 103: 9217-9234
[11]  Tsurutani B T, Gonzalez W D. 1997. The interplanetary causes of magnetic storms: A review. In: Tsurutani B T, Gonzalez W D, Kamide Y, Arballo J K, eds. Magnetic Storm. Geophys Monogr Vol. 98. Washington D C: AGU. 77-89
[12]  Tverskaya LV, Ginzburg E A, Ivanova T A, et al. 2007. Peculiarities of the outer radiation belt dynamics during the strong magnetic storm of May 15, 2005. Geomagn Aeron, 47: 696-703
[13]  Walker R J, Erickson K N, Swznson R L, et al. 1976. Substorm-associated particle boundary motion at synchronous orbit. J Geophys Res, 81: 5541-5550
[14]  Wygant J, Rowland D, Singer H J, et al. 1998. Experimental evidence on the role of the large spatial scale electric field in creating the ring current. J Geophys Res, 103: 29527-29544
[15]  Xie L, Pu Z Y, Zhou X Z, et al. 2006. Energetic ion injection and formation of the storm-time symmetric ring current. Ann Geophys, 24: 3547-3556
[16]  C:son Brandt P, Demajistre R, Roelof E C, et al. 2002a. IMAGE/high-energy energetic neutral atom: Global energetic neutral atom imaging of the plasma sheet and ring current during substorms. J Geophys Res, 107: 1454
[17]  C:son Brandt P, Ohtani S, Mitchell D G, et al. 2002b. ENA observations of a global substorm growth phase dropout in the nightside magnetosphere. Geophys Res Lett, 29: 1962
[18]  Daglis I A, Richard Thorne M, Baumjohann W, et al. 1999. The terrestrial ring current: Origin, formation, and decay. Rev Geophys, 37: 407-438
[19]  Delcourt D C. 2002. Particle acceleration by inductive electric fields in the inner magnetosphere. J Astrophy, 64: 551-559
[20]  Echer E, Gonzalez W D, Tsurutani B T. 2008. Interplanetary conditions leading to Superintense geomagnetic storms (Dst <-250 nT) during solar cycle 23. Geophy Res Lett, 35: L06S03
[21]  Fu H S, Khotyaintsev Y V, André M, et al. 2011. Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophys Res Lett, 38: L16104
[22]  Fu H S, Khotyaintsev Y V, Vaivads A, et al. 2012a. Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview. J Geophys Res, 117: A12221
[23]  Fu H S, Khotyaintsev Y V, Vaivads A, et al. 2012b. Electric structure of Dipolarization front at sub-proton scale. Geophys Res Lett, 39: L06105
[24]  Hori T, Lui A T Y, Ohtani S, et al. 2005. Storm-time convection electric field in the near-Earth plasma sheet. J Geophys Res, 110: A04213
[25]  Grafe A, Feldstein Y I. 2000. About the relationship between auroral electrojets and ring current. Ann Geophys, 18: 874-886
[26]  Kamide Y, Baumjohann W, Daglis I A, et al. 1998. Current understanding of magnetic storms: Storm-substorm relationships. J Geophys Res, 103: 17705-17728
[27]  Kozyreva O V, Kleimenova N G. 2007. Geomagnetic pulsations and magnetic disturbances during the initial phase of a strong magnetic storm of May 15, 2005. Geomagn Aeron, 47: 501-511
[28]  Lazutin L L, Kuznetsov S N. 2008. Nature of sudden auroral activations at the beginning of magnetic storms. Geomagn Aeron, 48: 165-174
[29]  Le G, Russell C T, Takahashi K. 2004. Morphology of the ring current derived from in-situ magnetic field measurements. Ann Geophys, 22: 1267-1295
[30]  Belian R D, Gisler G R, Cayton T, et al. 1992. High-Z energetic particles at geostationary orbit during the great solar proton event series of October 1989. J Geophys Res, 97: 16897

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133