Munker C. 1998. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: Source constraints and application of refined ICPMS techniques. Chem Geol, 144: 23-5
[19]
Nowell G M, Kempton P D, Noble S R, et al. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry: Insights into the depleted mantle. Chem Geol, 149: 211-233
[20]
Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol, 69: 33-47
[21]
Pearce J A, Parkinson I J. 1993. Trace element models for mantle melting: Application to volcanic arc petrogenesis. J Geol Soc London Spec Pub, 76: 373-403
[22]
Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci, 23: 251-285
[23]
Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 145: 325-394
[24]
Plank T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol, 46: 921-944
Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta, 53: 197-214
[49]
Baker J A, Menzies M A, Thirlwall M F, et al. 1997. Petrogenesis of Quaternary intra-plate volcanism, Sana''a Yemen: Implication and polybasic melt hybridization. J Petrol, 38: 1359-1390
[50]
Castillo P R, Solidum R U, Punongbayan R S. 2002. Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited. Geology, 30: 707-710
[51]
Chen B, Jahn B M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotopic and trace element evidence. J Asian Earth Sci, 23: 691-703
[52]
Dilek Y, Altunkaynak S. 2007. Cenozoic crustal evolution and mantle dynamics of post-collisional magmatism in western Anatolia. Int Geol Rev, 49: 431-453
[53]
Elliott T, Plank T, Zindler A, et al. 1997. Element transport from slab to volcanic front at the Mariana arc. J Geophys Res, 102: 14991-15019
[54]
Hanyu T, Tatsumi Y, Nakai S, et al. 2006. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: constraints from geochemistry. Geochem Geophys Geosyst, 7: 1-29
[55]
Hawkesworth C J, Gallagher K, Hergt J M, et al. 1993. Mantle and slab contributions in arc magmas. Annu Rev Earth Planet Sci, 21: 175-204
[56]
Hawkesworth C, Turner S, Gallagher K, et al. 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. J Geophys Res, 100: 10271-10286
[57]
Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 90: 297-314
[58]
Hole M J, Saunders A D, Marriner G F, et al. 1984. Subduction of pelagic sediments: Implications for the origin of Ce-anomalous basalts from the Mariana Islands. J Geol Soc London, 141: 453-72
[59]
Hong D W, Zhang J S, Wang T, et al. 2004. Continental crustal growth and the super continental cycle: Evidence from the Central Asian Orogenic Belt. J Asian Earth Sci, 23: 799-813
[60]
Ionov D A, Hofmann A W. 1995. Nb-Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett, 131: 341-356
[61]
Irvine T N, Baragar W R. 1971. A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci, 8: 523-548
[62]
Kessel R, Schmidt M W, Ulmer P, et al. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Nature, 437: 724-727
[63]
Klemme S, Prowatke S, Hametner K, et al. 2005. Partitioning of trace elements between rutile and silicate melts: Implications for subuduction zones. Geochim Cosmochim Acta, 69: 2361-2371
[64]
Kosarev G, Kind R, Sobolev S V, et al. 1999. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science, 283: 1306-1309
[65]
Kovalenko V I, Yarmolyuk V V, Kovach V P, et al. 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence. J Asian Earth Sci, 23: 605-627
[66]
Lemaitre R W, Bateman P. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell
[67]
Ma X X, Shu L S, Joseph G M. 2015. Early Permian slab break off in the Chinese Tianshan belt inferred from the post-collisional granitoids. Gondwana Res, 27: 228-243
[68]
Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46: 411-429
[69]
Sajona F G, Bellon H, Maury B C, et al. 1994. Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary cale-alkaline and Nb-enriched lavas from Mindanao (Philippines). Tectono Physics, 237: 47-72
[70]
Sajona F G, Maury R C, Bellon H, et al. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21: 1007-1010
[71]
Song X Y, Xie W, Deng Y F, et al. 2011. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127: 128-143
[72]
Song X Y, Zhou M F, Cao Z M, et al. 2004. Late Permian rifting of the South China Craton caused by the Emeishan mantle plume? J Geol Soc London, 161: 773-781
[73]
Stolz A J, Jochum K P, Spettel B, et al. 1996. Fluid- and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts. Geology, 24: 587-590
[74]
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in Ocean Basins. J Geol Soc London Spec Pub, 42: 313-345
[75]
Vander Voo R, Spakman W, Bijwaard H. 1999. Tethyan subducted slabs under India. Earth Planet Sci Lett, 171: 7-20
[76]
Wilson M, Downes H. 1991. Tertiary-Quaternary extension-related magmatism in western and central Europe. J Petrol, 32: 811-849
[77]
Winchester J A, Floyd P A. 1976. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth Planet Sci Lett, 29: 459-469
[78]
Yin J Y, Yuan C, Sun M, et al. 2010. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications. Gondwana Res, 17: 145-152
[79]
Zhang H F, Sun M, Lu F X, et al. 2001. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China. Geochem J, 35: 315-331
[80]
Zheng J P, Sun M, Zhao G C, et al. 2007. Elemental and Sr-Nd-Pb isotopic geochemistry of Late Paleozoic volcanic rocks beneath the Junggar basin, NW China: Implications for the formation and evolution of the basin basement. J Asian Earth Sci, 29: 778-794
[81]
Zhou M F, Lesher C M, Yang Z X, et al. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu (PGE) sulfide bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian Orogenic Belt. Chem Geol, 209: 233-257
[82]
Zhou T F, Yuan F, Fan Y, et al. 2008. Granites in the Sawuer region of the west Junggar, Xinjiang, China: Geochronological and geochemical characteristics and their geodynamic significance. Lithos, 106: 191-206
[83]
Zindler A, Hart S R. 1986. Chemical geodynamics. Annu Rev Earth Planet Sci, 14: 493-571
[84]
Zou H B, Zindler A. 1996. Constraints on the degree of dynamic partialmelting and source composition using concentration ratios in magmas. Geochim Cosmochim Acta, 60: 711-717