全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新疆三塘湖地区中二叠世条湖组基性-超基性岩的地球化学特征及其大地构造背景

DOI: 10.1007/s11430-015-5161-z, PP. 1481-1496

Keywords: 中亚造山带,三塘湖地区,中二叠世,苦橄质岩,岩石圈地幔

Full-Text   Cite this paper   Add to My Lib

Abstract:

?新疆东北部三塘湖地区是中亚造山带的重要组成部分,其二叠纪岩浆活动的动力学机制颇有争议.该区中二叠世条湖组出露一套厚层火山岩,以玄武岩为主,并有少量苦橄质岩、安山岩等.苦橄质岩具橄榄石的堆晶结构,其Mg#值高达0.68~0.77;玄武岩具有斑状和粗玄结构,其Mg#值相对较低(0.41~0.54),显示出演化的特征.条湖组基性-超基性岩具轻稀土略富集的右倾稀土配分模式,虽然在微量元素蛛网图上表现出Nb和Ti的负异常,但是总体具有较高的TiO2含量,而且Nb,Zr含量以及Nb/Y,Zr/Yb比值远高于弧火山岩,较低的Sr同位素初始比值和高正εNd(t)和εHf(t)值表明未受古老大陆地壳物质的混染,该区条湖组基性-超基性岩很可能是遭受俯冲流体交代,萃取而相对难熔的亏损岩石圈地幔部分熔融形成的.另外,苦橄质岩中橄榄石的堆晶高达38%,显示亏损岩石圈地幔部分熔融程度高,而条湖组下伏地层芦草沟组显示有深部地幔过碱性岩浆活动,表明三塘湖地区发生了大范围的高热地幔物质底垫作用,该过程可能与地幔柱作用有关.

References

[1]  刘家远. 2001. 论新疆东准噶尔陆相火山成矿作用. 大地构造与成学. 25: 434-438
[2]  柳益群, 焦鑫, 李红, 等. 2011. 新疆三塘湖跃进沟二叠系地幔热液喷流型原生白云岩. 中国科学: 地球科学, 41: 1862-1871
[3]  刘洪福, 尹凤娟. 2001. 新疆三塘湖盆地卡拉岗组时代问题商榷. 西北大学学报, 31: 496-499
[4]  刘延莉, 柳益群. 2004. 三塘湖盆地二叠纪芦草沟组分布及其意义. 西北地质, 37: 36-41
[5]  刘晔, 柳小明, 胡兆初, 等. 2007. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析. 岩石学报, 23: 1203-1210
[6]  龙晓平, 孙敏, 袁超, 等. 2006. 东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约. 岩石学报, 22: 31-40
[7]  马丽芳. 2002. 中国地质图集. 北京: 地质出版社
[8]  任纪舜, 牛宝贵, 刘志刚. 1999. 软碰撞, 叠覆造山和多旋回缝合作用. 地学前缘, 6: 85-93
[9]  任纪舜. 1994. 中国大陆的组成、结构、演化和动力学. 地球学报, 15: 5-13
[10]  舒良树, 王玉净. 2003. 新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石. 地质论评, 19: 408-412
[11]  唐红峰, 苏玉平, 刘丛强, 等. 2007. 新疆北部卡拉麦里斜长花岗岩的锆石U-Pb年龄及其构造意义. 大地构造与成矿学, 31: 110-117
[12]  汪帮耀, 姜常义, 李永军, 等. 2009. 新疆东准噶尔卡拉麦里蛇绿岩的地球化学特征及大地构造意义. 矿物岩石, 29: 74-82
[13]  汪双双, 柳益群, 周鼎武, 等. 2013. 新疆三塘湖地区岩浆岩石学与地球化学研究. 矿物岩石地球化学通报, 32: 354-363
[14]  汪双双. 2013. 新疆三塘湖地区中二叠世岩浆活动与成盆地力学背景示踪. 博士学位论文. 西安: 西北大学. 1-144
[15]  王仁民, 凤永刚, 程素华. 2007. 富Nb玄武岩在冀北前寒武纪地区的发现. 高校地质学报, 13: 458-462
[16]  王成元, 成守德. 2001. 新疆地壳演化与成矿. 地质科学, 362: 129-143
[17]  吴小奇. 2010. 新疆北部卡拉麦里缝合带后碰撞构造岩浆作用及其对火山岩油气成藏的制约. 博士学位论文. 合肥: 中国科学技术大学. 1-142
[18]  Munker C. 1998. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: Source constraints and application of refined ICPMS techniques. Chem Geol, 144: 23-5
[19]  Nowell G M, Kempton P D, Noble S R, et al. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry: Insights into the depleted mantle. Chem Geol, 149: 211-233
[20]  Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol, 69: 33-47
[21]  Pearce J A, Parkinson I J. 1993. Trace element models for mantle melting: Application to volcanic arc petrogenesis. J Geol Soc London Spec Pub, 76: 373-403
[22]  Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci, 23: 251-285
[23]  Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 145: 325-394
[24]  Plank T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol, 46: 921-944
[25]  韩宝福, 何国琦, 王式洸. 1999. 后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质. 中国科学D辑: 地球科学, 29: 16-21
[26]  韩宝福, 季建清, 宋彪, 等. 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)-后碰撞深成岩浆活动的时限. 岩石学报, 2: 1077-1086
[27]  郝建荣, 周鼎武, 柳益群, 等. 2006. 新疆三塘湖盆地二叠纪火山岩岩石地球化学及其构造环境分析. 岩石学报, 22: 189-198
[28]  何国琦, 徐新. 2004. 中国新疆天山地质与矿产论文集. 北京: 地质出版社
[29]  贺敬博, 陈斌. 2011. 西准噶尔克拉玛依岩体的成因: 年代学、岩石学和地球化学证据. 地学前缘, 18: 191-211
[30]  简平, 刘敦一, 张旗, 等. 2003. 蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年. 地学前缘, 10: 439-456
[31]  寇彩化, 张招崇, 侯通, 等. 2011. 滇西剑川OIB 型苦橄玢岩: 俯冲板块断离的产物? 岩石学报, 27: 2679-2693
[32]  李献华, 祁昌实, 刘颖, 等. 2005. 岩石样品快速Hf分离与MC-ICPMS同位素分析: 一个改进的单柱提取色谱方法. 地球化学, 34: 109-114
[33]  李宗怀, 韩宝福, 宋彪. 2004. 新疆东准噶尔二台北花岗岩体和包体的SHRIMP锆石U-Pb年龄及其地质意义. 岩石学报, 20: 1263-1270
[34]  李锦轶. 1991. 试论新疆东准噶尔古生代板块构造演化. 见: 肖序常, 汤耀庆, 主编. 古中亚复合巨型缝合带南缘构造演化. 北京: 北京科学技术出版社. 92-108
[35]  李锦轶, 徐新. 2004. 新疆北部地质构造和成矿作用的主要问题. 新疆地质, 22: 199-124
[36]  李华芹, 谢才富, 常海亮, 等. 1998. 新疆北部有色贵金属矿床成矿作用年代学. 北京: 地质出版社
[37]  夏林圻, 夏祖春, 徐学义, 等. 2004. 天山石炭纪大火成岩省与地慢柱. 地质通报, 23: 903-910
[38]  肖文交, Windley B F, 闫全人, 等. 2006. 北疆地区阿尔曼太蛇绿岩锆石SHRIMP年龄及其大地构造意义. 地质学报, 80: 32-37
[39]  肖序常, 汤耀庆, 冯益民, 等. 1992. 新疆北部及其邻区大地构造. 北京: 地质出版社. 104-123
[40]  徐平, 吴福元, 谢烈文, 杨岳衡. 2004. U-Pb同位素定年标准锆石的Hf同位素. 49: 1403-1410
[41]  杨学明, 杨晓勇, 陈双喜, 等, 译. 2000. 岩石地球化学. 见: Rollison H R, 著. 合肥: 中国科学技术大学出版社. 179-205
[42]  张传林, 周刚, 王洪燕, 等. 2010. 塔里木和中亚造山带西段二叠纪大火成岩省的两类地幔源区. 地质通报, 29: 779-794
[43]  张海祥, 张伯友, 牛贺才. 2005. 富妮玄武岩: 板片熔体交代的地幔楔橄榄岩部分熔融产物. 地球科学进展, 20: 1234-1242
[44]  张元元, 郭召杰. 2010. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究. 岩石学报, 26: 421-430
[45]  赵泽辉, 郭召杰, 韩宝福, 等. 2006. 新疆三塘湖盆地古生代晚期火山岩地球化学特征及其构造-岩浆演化意义. 岩石学报, 22: 199-214
[46]  赵振华, 白正华, 熊小林, 等. 2006. 中国新疆北部富碱火成岩及其成矿作用. 北京: 地质出版社
[47]  周鼎武, 柳益群, 邢秀娟, 等. 2006. 新疆吐哈、三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪. 中国科学 D辑: 地球科学, 36: 143-153
[48]  Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta, 53: 197-214
[49]  Baker J A, Menzies M A, Thirlwall M F, et al. 1997. Petrogenesis of Quaternary intra-plate volcanism, Sana''a Yemen: Implication and polybasic melt hybridization. J Petrol, 38: 1359-1390
[50]  Castillo P R, Solidum R U, Punongbayan R S. 2002. Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited. Geology, 30: 707-710
[51]  Chen B, Jahn B M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotopic and trace element evidence. J Asian Earth Sci, 23: 691-703
[52]  Dilek Y, Altunkaynak S. 2007. Cenozoic crustal evolution and mantle dynamics of post-collisional magmatism in western Anatolia. Int Geol Rev, 49: 431-453
[53]  Elliott T, Plank T, Zindler A, et al. 1997. Element transport from slab to volcanic front at the Mariana arc. J Geophys Res, 102: 14991-15019
[54]  Hanyu T, Tatsumi Y, Nakai S, et al. 2006. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: constraints from geochemistry. Geochem Geophys Geosyst, 7: 1-29
[55]  Hawkesworth C J, Gallagher K, Hergt J M, et al. 1993. Mantle and slab contributions in arc magmas. Annu Rev Earth Planet Sci, 21: 175-204
[56]  Hawkesworth C, Turner S, Gallagher K, et al. 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. J Geophys Res, 100: 10271-10286
[57]  Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 90: 297-314
[58]  Hole M J, Saunders A D, Marriner G F, et al. 1984. Subduction of pelagic sediments: Implications for the origin of Ce-anomalous basalts from the Mariana Islands. J Geol Soc London, 141: 453-72
[59]  Hong D W, Zhang J S, Wang T, et al. 2004. Continental crustal growth and the super continental cycle: Evidence from the Central Asian Orogenic Belt. J Asian Earth Sci, 23: 799-813
[60]  Ionov D A, Hofmann A W. 1995. Nb-Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett, 131: 341-356
[61]  Irvine T N, Baragar W R. 1971. A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci, 8: 523-548
[62]  Kessel R, Schmidt M W, Ulmer P, et al. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Nature, 437: 724-727
[63]  Klemme S, Prowatke S, Hametner K, et al. 2005. Partitioning of trace elements between rutile and silicate melts: Implications for subuduction zones. Geochim Cosmochim Acta, 69: 2361-2371
[64]  Kosarev G, Kind R, Sobolev S V, et al. 1999. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science, 283: 1306-1309
[65]  Kovalenko V I, Yarmolyuk V V, Kovach V P, et al. 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: Geological and isotopic evidence. J Asian Earth Sci, 23: 605-627
[66]  Lemaitre R W, Bateman P. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell
[67]  Ma X X, Shu L S, Joseph G M. 2015. Early Permian slab break off in the Chinese Tianshan belt inferred from the post-collisional granitoids. Gondwana Res, 27: 228-243
[68]  Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46: 411-429
[69]  Sajona F G, Bellon H, Maury B C, et al. 1994. Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary cale-alkaline and Nb-enriched lavas from Mindanao (Philippines). Tectono Physics, 237: 47-72
[70]  Sajona F G, Maury R C, Bellon H, et al. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21: 1007-1010
[71]  Song X Y, Xie W, Deng Y F, et al. 2011. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127: 128-143
[72]  Song X Y, Zhou M F, Cao Z M, et al. 2004. Late Permian rifting of the South China Craton caused by the Emeishan mantle plume? J Geol Soc London, 161: 773-781
[73]  Stolz A J, Jochum K P, Spettel B, et al. 1996. Fluid- and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts. Geology, 24: 587-590
[74]  Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in Ocean Basins. J Geol Soc London Spec Pub, 42: 313-345
[75]  Vander Voo R, Spakman W, Bijwaard H. 1999. Tethyan subducted slabs under India. Earth Planet Sci Lett, 171: 7-20
[76]  Wilson M, Downes H. 1991. Tertiary-Quaternary extension-related magmatism in western and central Europe. J Petrol, 32: 811-849
[77]  Winchester J A, Floyd P A. 1976. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth Planet Sci Lett, 29: 459-469
[78]  Yin J Y, Yuan C, Sun M, et al. 2010. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications. Gondwana Res, 17: 145-152
[79]  Zhang H F, Sun M, Lu F X, et al. 2001. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China. Geochem J, 35: 315-331
[80]  Zheng J P, Sun M, Zhao G C, et al. 2007. Elemental and Sr-Nd-Pb isotopic geochemistry of Late Paleozoic volcanic rocks beneath the Junggar basin, NW China: Implications for the formation and evolution of the basin basement. J Asian Earth Sci, 29: 778-794
[81]  Zhou M F, Lesher C M, Yang Z X, et al. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu (PGE) sulfide bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian Orogenic Belt. Chem Geol, 209: 233-257
[82]  Zhou T F, Yuan F, Fan Y, et al. 2008. Granites in the Sawuer region of the west Junggar, Xinjiang, China: Geochronological and geochemical characteristics and their geodynamic significance. Lithos, 106: 191-206
[83]  Zindler A, Hart S R. 1986. Chemical geodynamics. Annu Rev Earth Planet Sci, 14: 493-571
[84]  Zou H B, Zindler A. 1996. Constraints on the degree of dynamic partialmelting and source composition using concentration ratios in magmas. Geochim Cosmochim Acta, 60: 711-717

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133