全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

论青藏运动主幕

DOI: 10.1007/s11430-015-5124-4, PP. 1597-1608

Keywords: 青藏运动,主夷平面,地貌循环,磨拉石沉积,生物生态

Full-Text   Cite this paper   Add to My Lib

Abstract:

?依据近30年来取得的地质、地貌、地层、古生物等方面的资料,对"青藏运动主幕"进行讨论.青藏高原目前的主体是中新世-上新世漫长的侵蚀作用形成的、被抬升的主夷平面,这个主夷平面在高原内部切过以中生界和古近系为主的变形岩系,向高原周边展布.3.6Ma前后,高原内外发生强烈的构造运动开始隆升,形成大幅度的地形反差,启动了一个旺盛的磨拉石堆积时期,主夷平面开始解体.至今高原内部仍保持着完整的准平原状态,山顶面和主夷平面之间的物质传输仍为主要的陆面过程.在高原边缘地带,河流强劲侵蚀,但目前尚未切入到腹地,各大江河最老阶地砾石层的年龄集中于1.7~1.9Ma.按照源于高原的各条江河现在的侵蚀能力估算,假使高原不再抬升,大约需要8.6Ma高原就将被再次夷平.但考虑地貌循环后期阶段侵蚀会大幅减缓,8.6Ma则足以使主夷平面消失殆尽,而进入老年、至少壮年期.表明高原面不可能于14Ma甚至35Ma前已达到目前的高度并维持至今.古生物资料表明,上新世早期柴达木盆地还生活着大象、长颈鹿、犀牛动物群和红土风化壳、植物群落一致显示湿热低地环境.亚洲中部变干、黄土堆积也与青藏高原上新世晚期以来隆起密切相关.

References

[1]  安芷生, 张培震, 王二七, 等. 2006. 中新世以来我国季风-干旱环境演化与青藏高原的生长. 第四纪研究, 26: 678-693
[2]  柴东浩, 陈延愚. 2000. 新地球观: 从大陆漂移到板块构造. 太原: 山西科学技术出版社. 193
[3]  陈富斌. 1996. 再论横断运动. 火山地质与矿产, 17: 14-22
[4]  陈梦熊. 1947. 甘肃中部之地文. 地质论评, 12: 545-556
[5]  崔之久, 伍永秋, 刘耕年, 等. 1998. 关于"昆仑-黄河运动". 中国科学D辑: 地球科学, 28: 53-59
[6]  戴霜, 方小敏, 宋春晖, 等. 2005. 青藏高原北部的早期隆升. 科学通报, 50: 673-683
[7]  邓涛. 2004. 临夏盆地晚新生代哺乳动物群演替与青藏高原隆升背景. 第四纪研究, 24: 413-420
[8]  方小敏, 赵志军, 李吉均, 等. 2004. 祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升. 中国科学D辑: 地球科学, 34: 97-106
[9]  冯彦, 何大明, 甘淑. 2008. 纵向岭谷区怒江流域生态变化之驱动力分析. 山地学报, 26: 538-545
[10]  黄汲清. 1957. 中国新构造运动的几个类型. 见: 中国科学院地学部, 编. 中国科学院第一次新构造运动座谈会发言记录. 北京: 科学出版社. 8-44
[11]  黄万里. 1993. 关于长江三峡砾卵石输移量的讨论. 水力发电学报, 12: 107-115
[12]  李炳元, 潘保田, 高红山. 2002. 可可西里东部地区的夷平面与火山年代. 第四纪研究, 22: 397-405
[13]  李吉均. 1993. 青藏高原隆起及其对环境的影响. 见: 包浩生, 主编. 任美锷教授八十华诞地理论文集. 南京: 南京大学出版社. 57-63
[14]  李吉均, 方小敏. 1998. 青藏高原隆起与环境变化研究. 科学通报, 43: 1569-1574
[15]  李吉均, 方小敏, 潘保田, 等. 2001. 新生代晚期青藏高原强烈隆起及其对周边环境的影响. 第四纪研究, 21: 381-391
[16]  李吉均, 文世宣, 张青松, 等. 1979. 青藏高原隆起的时代、幅度和形式的探讨. 中国科学A辑, 9: 608-616
[17]  李吉均, 张军, 宋春晖, 等. 2007. 陇中盆地灞河期地层的发现及意义. 中国科学D辑: 地球科学, 37: 52-60
[18]  李勇, 周荣军, Densmore A, 等. 2006. 青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志. 第四纪研究, 26: 40-51
[19]  鹿化煜, 郭正堂. 2013. 晚新生代东亚气候变化: 进展与问题. 中国科学: 地球科学, 43: 1907-1918
[20]  马玉贞, 方小敏, 李吉均, 等. 2004. 酒西盆地晚第三纪-第四纪早期植被与气候变化. 中国科学D辑: 地球科学, 34: 107-116
[21]  施雅风. 1998. 第四纪中期青藏高原冰冻圈的演化及其与全球变化的联系. 冰川冻土, 20: 197-208
[22]  宋友桂, 方小敏, 李吉均, 等. 2000. 六盘山东麓朝那剖面红粘土年代及其构造意义. 第四纪研究, 20: 457-463
[23]  王富葆, 李升峰, 申旭辉. 1998. 喜马拉雅山中段北坡(以吉隆盆地为主)天然剖面记录. 见: 施雅风, 李吉均, 李炳元, 主编. 青藏高原晚新生代隆升与环境变化. 广州: 广东科技出版社. 117-139
[24]  王晓鸣, 颉光普, 李强, 等. 2011. 步林在青海柴达木盆地的早期工作记录——经典脊椎动物化石地点与现代地层框架的解译. 古脊椎动物学报, 49: 285-310
[25]  岳乐平, Heller F, 邱占祥, 等. 2000. 兰州盆地第三系磁性地层年代与古环境记录. 科学通报, 45: 1998-2002
[26]  岳乐平, 邱占祥, 颉光普, 等. 2003. 兰州盆地永登剖面记录的第三纪沉积环境. 沉积学报, 21: 683-687
[27]  张克信, 王国灿, 季军良, 等. 2010. 青藏高原古近纪-新近纪地层分区与序列及其对隆升的响应. 中国科学: 地球科学, 40: 1632-1654
[28]  张培震, 郑德文, 尹功明, 等. 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论. 第四纪研究, 26: 5-13
[29]  赵志军, 刘勇, 陈晔, 等. 2013. 基于 ESR 年代的川西高原河流下切速率. 兰州大学学报(自然科学版), 49: 160-172
[30]  Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311: 615-621
[31]  Peng T J, Li J J, Zhao Z J, et al. 2013. Biomarkers aid paleoenvironment studies of Asian aridification. Eos Trans AGU, 94: 173-174
[32]  Raymo M, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117-122
[33]  Rea D K, Snoeckx H, Joseph L H. 1998. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13: 215-224
[34]  Rowley D B, Currie B S. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439: 677-681
[35]  Royden L H, Burchfiel B C, van Der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054-1058
[36]  Shackleton R, Chang C. 1988. Cenozoic uplift and deformation of the Tibetan Plateau: The geomorphological evidence. Philos Trans R Soc A-Math Phys Eng Sci, 327: 365-377
[37]  Spicer R A, Harris N B, Widdowson M, et al. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421: 622-624
[38]  Strobl M, Hetzel R, Ding L, et al. 2010. Preservation of a large-scale bedrock peneplain suggests long-term landscape stability in southern Tibet. Zeitschrift Fur Geomorphol, 54: 453-466
[39]  Summerfield M A, Hulton N J. 1994. Natural control of fluvial denudation rate in major world drainage basins. J Geophys Res, 99: 13871-13883
[40]  Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294: 1671-1677
[41]  Tian Y T, Kohn B P, Gleadow A J W, et al. 2014. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. J Geophys Res, 119: 676-689
[42]  van der Beek P, van Melle J, Guillot S, et al. 2009. Eocene Tibetan Plateau remnants preserved in the northwest Himalaya. Nature Geosci, 2: 364-368
[43]  周安辉. 2012. 澜沧江近20年泥沙变化特性分析. 人民长江, 43(增刊): 114-115
[44]  颜茂都. 2003. 青藏高原东北部高分辨率新生代磁性地层及其在地学上的应用. 博士学位论文. 兰州: 兰州大学. 1-142
[45]  中华人民共和国水利部编. 2011. 中国河流泥沙公报. 北京: 中国水利水电出版社. 64
[46]  Ab''Sáber A N. 2000. Summit surfaces in Brazil. Rev Bras Geociênc, 30: 515-516
[47]  Amano K, Taira A. 1992. Two-phase uplift of Higher Himalayas since 17 Ma. Geology, 20: 391-394
[48]  Burbank D W, Derry L A, France-Lanord C. 1993. Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 364: 48-50
[49]  Burbank D W, Johnson G D. 1982. Intermontane-basin development in the past 4 Myr in the north-west Himalaya. Nature, 298: 432-436
[50]  Burbank D W, Reynolds R G. 1984. Sequential late Cenozoic structural disruption of the northern Himalayan foredeep. Nature, 311: 114-118
[51]  Cane M A, Molnar P. 2001. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago. Nature, 411: 157-162
[52]  Cerling T E, Wang Y, Quade J. 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361: 344-345
[53]  Clark M K, House M, Royden L, et al. 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33: 525-528
[54]  Clark M K, Royden L H, Whipple K X, et al. 2006. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. J Geophys Res, 111: F03002
[55]  Coleman M, Hodges K. 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374: 49-52
[56]  Craddock W H, Kirby E, Harkins N W, et al. 2010. Rapid fluvial incision along the Yellow River during headward basin integration. Nature Geosci, 3: 209-213
[57]  Dai S, Fang X M, Dupont-Nivet G, et al. 2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J Geophys Res, 111: B11102
[58]  Davis W M. 1899. The geographical cycle. Geogr J, 14: 481-504
[59]  DeCelles P, Kapp P, Quade J, et al. 2011. Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone. Geol Soc Am Bull, 123: 1337-1362
[60]  Deng T, Li Q, Tseng Z J, et al. 2012. Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance. Proc Natl Acad Sci USA, 109: 7374-7378
[61]  Deng T, Wang X M, Fortelius M, et al. 2011. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science, 333: 1285-1288
[62]  Dupont-Nivet G, Horton B, Butler R, et al. 2004. Paleogene clockwise tectonic rotation of the Xining-Lanzhou region, northeastern Tibetan Plateau. J Geophys Res, 109: B04401
[63]  Gaillardet J, Dupré B, Louvat P, et al. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol, 159: 3-30
[64]  Garzanti E, Vezzoli G, Andò S, et al. 2005. Petrology of Indus River sands: A key to interpret erosion history of the Western Himalayan Syntaxis. Earth Planet Sci Lett, 229: 287-302
[65]  Harrison T M, Copeland P, Kidd W S F, et al. 1992. Raising Tibet. Science, 255: 1663-1670
[66]  Hao M, Wang Q L, Shen Z K, et al. 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics, 632: 281-292
[67]  He S P, Cao W X, Chen Y Y. 2001. The uplift of Qinghai-Xizang (Tibet) Plateau and the vicariance speciation of glyptosternoid fishes (Siluriformes: Sisoridae). Sci China Ser C-Life Sci, 44: 644-651
[68]  Hetzel R, Dunkl I, Haider V, et al. 2011. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology, 39: 983-986
[69]  Hough B G, Garzione C N, Wang Z, et al. 2014. Timing and spatial patterns of basin segmentation and climate change in Northeastern Tibet. In: Nie J, Horton B K, Hoke G D, eds. Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Spec Pap Geol Soc Am. 129-153
[70]  Hui Z C, Li J J, Xu Q H, et al. 2011. Miocene vegetation and climatic changes reconstructed from a sporopollen record of the Tianshui Basin, NE Tibetan Plateau. Paleogeogr Paleoclimatol Paleoecol, 308: 373-382
[71]  Islam M R, Begum S F, Yamaguchi Y, et al. 1999. The Ganges and Brahmaputra rivers in Bangladesh: Basin denudation and sedimentation. Hydro Process, 13: 2907-2923
[72]  Johnson N M, Stix J, Tauxe L, et al. 1985. Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan. J Geol, 93: 27-40
[73]  Kennan L, Lamb S, Hoke L. 1997. High-altitude palaeosurfaces in the Bolivian Andes: Evidence for late Cenozoic surface uplift. Geol Soc London Spec Publ, 120: 307-323
[74]  Kutzbach J E, Guetter P J, Ruddiman W F, et al. 1989. Sensitivity of climate to Late Cenozoic uplift in Southern Asia and the American West: Numerical experiments. J Geophys Res, 94: 18393-18407
[75]  Le Fort P, Cuney M, Deniel C, et al. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134: 39-57
[76]  Lease R O. 2014. Cenozoic mountain building on the northeastern Tibetan Plateau. In: Nie J, Horton B K, Hoke G D, eds. Toward and Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Spec Pap Geol Soc Am. 115-127
[77]  Li J J, Fang X M, Van Der Voo R, et al. 1997. Late Cenozoic magnetostratigraphy (11-0 Ma) of the Dongshanding and Wangjiashan sections in the Longzhong Basin, western China. Geol Mijnbouw-N J G, 76: 121-134
[78]  Li J J. 1991. The environmental effects of the uplift of the Qinghai-Xizang Plateau. Quat Sci Rev, 10: 479-483
[79]  Li J J. 1995. Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change. Lanzhou: Lanzhou University Press. 207
[80]  Li Z J, Yu G H, Rao D Q, et al. 2012. Phylogeography and demographic history of Babinapleuraden (Anura, Ranidae) in southwestern China. PloS One, 7: e34013
[81]  Liang S M, Gan W J, Shen C Z, et al. 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J Geophys Res, 118: 5722-5732
[82]  Lin X B, Chen H L, Wyrwoll K H, et al. 2011. The uplift history of the Haiyuan-Liupan Shan region northeast of the present Tibetan Plateau: Integrated constraint from stratigraphy and thermochronology. J Geol, 119: 372-393
[83]  Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003
[84]  Liu J Q, Wang Y J, Wang A L, et al. 2006. Radiation and diversification within the Ligulariai-Cremanthodium-Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Mol Phylogenet Evol, 38: 31-49
[85]  Milliman J D, Meade R H. 1983. World-wide delivery of river sediment to the oceans. J Geol. 91: 1-21
[86]  Molnar P, England P. 1990. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature, 346: 29-34
[87]  Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev Geophys, 31: 357-396
[88]  Molnar P, Boos W R, Battisti D S. 2010. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sci, 38: 77-102
[89]  Mugniera J L, Leturmya P, Masclea G. 1999. The Siwaliks of western Nepal: I. Geometry and kinematics. J Asian Earth Sci, 17: 629-642
[90]  Wagner T, Fritz H, Stüwe K, et al. 2011. Correlations of cave levels, stream terraces and planation surfaces along the River Mur-Timing of landscape evolution along the eastern margin of the Alps. Geomorphology, 134: 62-78
[91]  Wang C S, Li X H, Hu X M, et al. 2002. Latest marine horizon north of Qomolangma (Mt Everest): Implications for closure of Tethys seaway and collision tectonics. Terra Nova, 14: 114-120
[92]  Wang C S, Zhao X X, Liu Z F, et al. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 105: 4987-4992
[93]  Wang C S, Dai J G, Zhao X X, et al. 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621: 1-43
[94]  Wang J, Wang Y J, Liu Z C, et al. 1999. Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Paleogeogr Paleoclimatol Paleoecol, 152: 37-47
[95]  Wang X M, Qiu Z D, Li Q, et al. 2007. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Paleogeogr Paleoclimatol Paleoecol, 254: 363-385
[96]  Wang Y, Xu Y F, Khawaja S, et al. 2013. Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleo-elevation implications. Earth Planet Sci Lett, 376: 43-53
[97]  Wasson R. 2003. A sediment budget for the Ganga-Brahmaputra catchment. Current Sci, 84: 1041-1047
[98]  Wilson A W. 1903. The Laurentian Peneplain. J Geol, 11: 615-667
[99]  Yan F, Zhou W W, Zhao H T, et al. 2013. Geological events play a larger role than Pleistocene climatic fluctuations in driving the genetic structure of Quasipaaboulengeri (Anura: Dicroglossidae). Mol Eco, 22: 1120-1133
[100]  Yan M D, Fang X M, van der Voo R, et al. 2012. Neogene rotations in the Jiuquan Basin, Hexi Corridor, China. Geol Soc London Spec Pub, 373
[101]  Yuan Q J, Zhang Z Y, Peng H, et al. 2008. Chloroplast phylogeography of Dipentodon (Dipentodontaceae) in southwest China and northern Vietnam. Molecular Ecol, 17: 1054-1065
[102]  Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686-693
[103]  Zhang C F, Wang Y, Li Q, et al. 2012. Diets and environments of late Cenozoic mammals in the Qaidam Basin, Tibetan Plateau: Evidence from stable isotopes. Earth Planet Sci Lett, 333: 70-82
[104]  Zhang D R, Chen M Y, Murphy R W, et al. 2010. Genealogy and palaeodrainage basins in Yunnan Province: Phylogeography of the Yunnan spiny frog, Nanoranayunnanensis (Dicroglossidae). Mol Ecol, 19: 3406-3420
[105]  Zhao Z J, Fang X M, Li J J, et al. 2001. Paleomagnetic dating of the Jiuquan Gravel in the Hexi Corridor: Implication on mid-Pleistocene uplift of the Qinghai-Tibetan Plateau. Chin Sci Bull, 46: 2001-2005
[106]  Zheng D W, Zhang P Z, Wan J L, et al. 2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite flssion-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth Planet Sci Lett, 248: 198-208
[107]  Zheng H B, Powell C M, An Z S, et al. 2000. Pliocene uplift of the northern Tibetan Plateau. Geology, 28: 715-718
[108]  Zhou S Z, Li J J, Zhao J D, et al. 2011. Chapter 70-Quaternary Glaciations: Extent and Chronology in China. In: Ehlers J, Gibbard P L, Hughes P D, eds. Developments in Quaternary Sciences, vol. 15. Amsterdam: Elsevier. 981-1002
[109]  Zhou S Z, Wang X L, Wang J, et al. 2006. A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai-Tibetan Plateau. Quat Int, 154-155: 44-51

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133