全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

俯冲隧道中的部分熔融和壳幔相互作用:实验岩石学制约

DOI: 10.1007/s11430-015-5186-3, PP. 1270-1284

Keywords: 俯冲隧道,部分熔融,壳幔相互作用,高温高压实验

Full-Text   Cite this paper   Add to My Lib

Abstract:

?俯冲隧道模型提出,俯冲板片界面相互作用是实现地球表层与内部之间物质和能量交换的基本机制.由于大陆岩石圈与大洋岩石圈在物质组成和状态上的显著差异,其深部物理和化学过程及壳幔相互作用产物必然出现一系列差异.许多实验岩石学研究已经为大洋俯冲隧道中可能发生的硅酸盐和碳酸盐岩石的部分熔融和壳幔相互作用提供了资料.无论是基性还是中酸性硅酸盐岩体系,取决于部分熔融发生的压力或深度,熔体是具有或不具有埃达克岩性质的花岗质熔体.微量CO2即可大幅降低橄榄岩的熔点,所形成的碳酸盐熔体可有效萃取岩石体系中不相容微量元素.这些硅饱和或不饱和熔体均可以在俯冲隧道或地幔深部条件下与地幔楔橄榄岩发生反应,形成复杂的反应过程和产物.但已有的实验结果主要是针对大洋岛弧环境条件而不是大陆俯冲带的环境.因此,高温高压实验需要充分考虑大陆俯冲隧道中板片-地幔界面上各种不同成分地壳及其衍生的熔/流体成分与不同橄榄岩之间的反应,并结合大陆俯冲带岩石部分熔融和壳幔相互作用的地质证据,以阐明大陆俯冲隧道过程中的变质脱水、部分熔融和地幔交代等问题.

References

[1]  Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. J Petrol, 36: 891-931
[2]  Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335-356
[3]  Rapp R P, Norman M D, Laporte D, Yaxley G M, Martin H, Foley S F. 2010. Continent formation in the Archean and chemical evolution of the cratonic lithosphere: Melt-rock reaction experiments at 3-4 GPa and petrogenesis of Archean Mg-diorites (sanukitoids). J Petrol, 51: 1237-1266
[4]  Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054-1058
[5]  Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Rudnick R L, ed. Treatise in Geochemistry: The Crust. Amsterdam: Elsevier. 1-64
[6]  Russell J K, Porritt L A, Lavallée Y, Dingwell D B. 2012. Kimberlite ascent by assimilation-fuelled buoyancy. Nature, 481: 352-357
[7]  Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydration slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361-379
[8]  Sekine T, Wyllie P J. 1982a. Phase relationships in the system KAlSiO4-Mg2SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Mineral Petrol, 79: 368-374
[9]  Sekine T, Wyllie P J. 1982b. The system granite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contrib Mineral Petrol, 81: 190-202
[10]  Sekine T, Wyllie P J. 1983. Experimental simulation of mantle hybridization in subduction zones. J Geol, 91: 511-528
[11]  Sen C, Dunn T. 1994a. Dehydration melting of a basaltic composition amphibolite at 1.5 GPa and 2.0 GPa: Implication for the origin of adakites. Contrib Mineral Petrol, 117: 394-409
[12]  Sen C, Dunn T. 1994b. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contrib Mineral Petrol, 119: 422-432
[13]  Shatsky V S, Jagoutz E, Sobolev N V, Kozmenko O A, Parkhomenko V S, Troesch M. 1999. Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). Contrib Mineral Petrol, 137: 185-205
[14]  Shaw C S J, Dingwell D B. 2008. Experimental peridotite-melt reaction at one atmosphere: A textural and chemical study. Contrib Mineral Petrol, 155: 199-214
[15]  Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, mélange formation, and prism accretion. J Geophys Res, 91: 10229-10245
[16]  Skjerlie K P, Johnston A D. 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J Petrol, 37: 661-691
[17]  Skjerlie K P, Pati?o Douce A E. 2002. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa: Implications for melting in thickened continental crust and for subduction-zone processes. J Petrol, 43: 291-314
[18]  Song Y R, Xu H J, Zhang J F, Wang D Y, Liu E D. 2014a. Syn-exhumation partial melting and melt segregation in the Sulu UHP terrane: Evidences from leucosome and pegmatitic vein of migmatite. Lithos, 202-203: 55-75
[19]  Song Y R, Xu H J, Zhang J F, Wang D Y, Liu E D. 2014b. Effects of melt fractional crystallization on Sr-Nd and Lu-Hf isotope systems: A case study of Triassic migmatite in the Sulu UHP terrane. Int Geol Rev, 56: 783-800
[20]  Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos, 170: 208-223
[21]  Springer W, Seck H A. 1997. Partial fusion of basic granulite at 5 to 15 kbar: Implications for the origin of TTG magmas. Contrib Mineral Petrol, 127: 30-45
[22]  St?ckhert B, Duyster J, Trepmann C, Massonne H J. 2001. Microdiamond daughter crystals precipitated from supercritical COH+silicate fluids included in garnet, Erzgebirge, Germany. Geology, 29: 391-394
[23]  Sweeney R J, Prozesky V, Przybylowicz W. 1995. Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18-46 kb pressure. Geochim Cosmochim Acta, 59: 3671-3683
[24]  Tao R, Fei Y, Zhang L. 2013. Experimental determination of siderite stability at high pressure. Am Mineral, 98: 1565-1572
[25]  Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Oxford: Blackwell Science. 211
[26]  Wallis S, Tsuboi M, Suzuki K, Fanning M, Jiang L, Tanaka T. 2005. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 33: 129-132
[27]  Wang C G, Liang Y, Xu W L, Dygert N. 2013. Effect of melt composition on basalt and peridotite interaction: laboratory dissolution experiments with applications to mineral compositional variations in mantle xenoliths form the North China Craton. Contrib Mineral Petrol, 166: 1469-1488
[28]  Wang L, Kusky T M, Polat A, Wang S J, Jiang X F, Zong K Q, Wang J P, Deng H, Fu J M. 2014. Partial melting of deeply subducted eclogite from the Sulu orogen in China. Natu Commun, 5: 5604, doi: 10.1038/ncomms6604
[29]  Wang Q, Wyman D A, Xu J F, Jian P, Zhao Z H, Li C F, Xu W, Ma J L, He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta, 71: 2609-2636
[30]  Wang X, Liu J G, Mao H K. 1989. Coesite-bearing eclogite from the Dabie Mountain in central China. Geology, 17: 1085-1088
[31]  Whitney D L, Teyssier C, Rey P F. 2009. The consequences of crustal melting in continental subduction. Lithosphere, 1: 323-327
[32]  Zhang J F, Wang C, Wang Y F. 2012. Experimental constraints on the destruction mechanism of the North China Craton. Lithos, 149: 91-99
[33]  Zhang J, Zhao Z F, Zheng Y F, Liu X M, Xie L W. 2012. Zircon Hf-O isotope and whole-rock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos, 136-139: 225-245
[34]  Zhang R Y, Yang J S, Wooden J L, Liou J G, Li T F. 2005. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implication for mantle metasomatism and subduction-zone UHP metamorphism. Earth Planet Sci Lett, 237: 729-734
[35]  Zhang Z M, Dong X, Liou J G, Liu F, Wang W, Yui F. 2011. Metasomatism of garnet peridotite from Jiangzhuang, southern Sulu UHP belt: Constraints on the interactions between crust and mantle rocks during subduction of continental lithosphere. J Metamorph Geol, 29: 917-937
[36]  Zhao Z D, Mo X X, Dilek Y, Niu Y, DePaolo D J, Robinson P, Zhu D, Sun C, Dong G, Zhou S, Luo Z, Hou Z. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113: 190-212
[37]  Zhao Z F, Zheng Y F, Chen R X, Xia Q X, Wu Y B. 2007. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochim Cosmochim Acta, 71: 5244-5266
[38]  Zhao Z F, Dai L Q, Zheng Y F. 2013. Postcollisional mafic ignieous rocks record crust-mantle interaction during continental deep subduction. Scientific Reports, 3: 3413, doi: 10.1038/srep03413
[39]  Zheng Y F. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J Geol Soc Lond, 166: 763-782
[40]  Zheng Y F, Xia Q X, Chen, R X, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev, 107: 342-374
[41]  Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5-48
[42]  Beaumont C, Jamieson R A, Butler J P, Warren C J. 2009. Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett, 287: 116-129
[43]  Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth Planet Sci Lett, 260: 373-393
[44]  Bercovici D, Karato S. 2003. Whole-mantle convection and the transition-zone water filter. Nature, 425: 39-44
[45]  Blundy J, Dalton J. 2000. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol, 139: 356-371
[46]  Brey G P, Bulatov V K, Girnis A V, Lahaye Y. 2008. Experimental melting of carbonated peridotite at 6-10 GPa. J Petrol, 49: 797-821
[47]  Brey G P, Bulatov V K, Girnis A V. 2009. Influence of water and fluorine on melting of carbonated peridotite at 6 and 10 GPa. Lithos, 112: 249-259
[48]  Bulatov V K, Brey G P, Girnis A V, Gerdes A, H?fer H E. 2014. Carbonated sediment-peridotite interaction and melting at 7.5-12 GPa. Lithos, 200-201: 368-385
[49]  Carroll M R, Wyllie P J. 1989. Granite melt convecting in an experimental micro-magma chamber at 1050℃, 15 kbar. Eur J Mineral, 1: 249-260
[50]  Chen J F, Xie Z, Li H M, Zhang X D, Zhou T X, Park Y S, Ahn K S, Chen D G, Zhang X. 2003. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane. China Geochem J, 37: 35-46
[51]  Chen Y X, Zheng Y F, Hu Z C. 2013a. Petrological and zircon evidence for anatexis of UHP quartzite during continental collision in the Sulu orogen. J Metamorphic Geol, 31: 389-413
[52]  Chen Y X, Zheng Y F, Hu Z C. 2013b. Synexhumation anatexis of ultrahigh-pressure metamorphic rocks: Petrological evidence from granitic gneiss in the Sulu orogen. Lithos, 156-159: 69-96
[53]  Chen Y X, Zheng Y F, Gao X Y, Hu Z C. 2014. Multiphase solid inclusions in zoisite-bearing eclogite: Evidence for partial melting of ultrahigh-pressure metamorphic rocks during continental collision. Lithos, 200-201: 1-21
[54]  Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1-14
[55]  Chung S L, Liu D Y, Ji J Q, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q, Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021-1024
[56]  Cloos M, Shreve R L. 1988a. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 1, Background and description. Pure Appl Geophys, 128: 455-500
[57]  Cloos M, Shreve R L. 1988b. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 2, Implications and discussion. Pure Appl Geophys, 128: 501-505
[58]  Dai L Q, Zhao Z F, Zheng Y F, Li Q L, Yang Y H, Dai M N. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett, 308: 224-244
[59]  Dai L Q, Zhao Z F, Zheng Y F, Zhang J. 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen. Chem Geol, 334: 99-121
[60]  Dai L Q, Zhao Z F, Zheng Y F. 2015. Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong''an-Dabie orogens. Gondwana Res, 27: 1236-1254
[61]  Dalton J A, Presnall D C. 1998. The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: Data from the system CaO-MgOAl2O3-SiO2-CO2 at 6 GPa. J Petrol, 39: 1953-1964
[62]  Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73-85
[63]  Dasgupta R, Hirschmann M M, Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol, 149: 288-305
[64]  Dasgupta R, Hirschmann M M. 2006. Melting in the Earth''s deep upper mantle caused by carbon dioxide. Nature, 440: 659-662
[65]  Dasgupta R, Hirschmann M M, Smith N D. 2007a. Partial melting experiments of peridotite+CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol, 48: 2093-2124
[66]  Dasgupta R, Hirschmann M M, Smith N D. 2007b. Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges. Geology, 35: 135-138
[67]  Dasgupta R, Hirschmann M M, McDonough W F, Spiegelman M, Withers A C. 2009. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle derived melts. Chem Geol, 262: 57-77
[68]  Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth''s interior. Earth Planet Sci Lett, 298: 1-13
[69]  Dasgupta R, Mallik A, Tsuno K, Withers A C, Hirth G, Hirschmann M M. 2013. Carbon-dioxide-rich silicate melt in the Earth''s upper mantle. Nature, 493: 211-215
[70]  Foley S F, Yaxley G M, Rosenthal A, Buhre S, Kiseeva E S, Rapp R P, Jacob D E. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos, 112S: 274-283
[71]  Gao X Y, Zheng Y F, Chen Y X. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. J Metamorphic Geol, 30: 193-212
[72]  Gao X Y, Zheng Y F, Chen Y X, Hu Z. 2013. Trace element composition of continentally subducted slab-derived melt: insight from multiphase solid inclusions in ultrahigh-pressure eclogite in the Dabie orogen. J Metamorphic Geol, 31: 453-468
[73]  Gao Y F, Hou Z Q, Kamber B S, Wei R H, Meng X J, Zhao R S. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contrib Mineral Petrol, 153: 105-120
[74]  Gerya T V, St?ckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21: 1056, doi: 10.1029/2002TC001406
[75]  Girnis A V, Bulatov V K, Lahaye Y, Brey G P. 2006. Partitioning of trace elements between carbonate-silicate melts and mantle minerals: Experiment and petrological consequences. Petrology, 14: 492-514
[76]  Litvinovsky B A, Steele I M, Wickham S M. 2000. Silicic magma formation in overthickened crust: Melting of charnockite and leucogranite at 15, 20 and 25 kbar. J Petrol, 41: 717-737
[77]  Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahihg-pressure minerals and metamorphic terranes-The view from China. J Asian Earth Sci, 35: 199-231
[78]  Liu F L, Xu Z Q, Liou J G, Song B. 2004. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. J Metamorphic Geol, 22: 315-326
[79]  Liu F L, Gerdes A, Liou J G, Xue H M, Liang F H. 2006. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, South China: Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. J Metamorphic Geol, 24: 569-589
[80]  Liu F L, Gerdes A, Zeng L S, Xue H. 2008. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China. Geochim Cosmochim Acta, 72: 2973-3000
[81]  Liu F L, Robinson P T, Gerdes A, Xue H, Liu P, Liou J G. 2010. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: constraints on the timing and nature of partial melting. Lithos, 117: 247-268
[82]  Sen C, Dunn T. 1994b. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contrib Mineral Petrol, 119: 422-432
[83]  Shatsky V S, Jagoutz E, Sobolev N V, Kozmenko O A, Parkhomenko V S, Troesch M. 1999. Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). Contrib Mineral Petrol, 137: 185-205
[84]  Shaw C S J, Dingwell D B. 2008. Experimental peridotite-melt reaction at one atmosphere: A textural and chemical study. Contrib Mineral Petrol, 155: 199-214
[85]  Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, mélange formation, and prism accretion. J Geophys Res, 91: 10229-10245
[86]  Skjerlie K P, Johnston A D. 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J Petrol, 37: 661-691
[87]  Skjerlie K P, Pati?o Douce A E. 2002. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa: Implications for melting in thickened continental crust and for subduction-zone processes. J Petrol, 43: 291-314
[88]  Song Y R, Xu H J, Zhang J F, Wang D Y, Liu E D. 2014a. Syn-exhumation partial melting and melt segregation in the Sulu UHP terrane: Evidences from leucosome and pegmatitic vein of migmatite. Lithos, 202-203: 55-75
[89]  Song Y R, Xu H J, Zhang J F, Wang D Y, Liu E D. 2014b. Effects of melt fractional crystallization on Sr-Nd and Lu-Hf isotope systems: A case study of Triassic migmatite in the Sulu UHP terrane. Int Geol Rev, 56: 783-800
[90]  Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos, 170: 208-223
[91]  Springer W, Seck H A. 1997. Partial fusion of basic granulite at 5 to 15 kbar: Implications for the origin of TTG magmas. Contrib Mineral Petrol, 127: 30-45
[92]  St?ckhert B, Duyster J, Trepmann C, Massonne H J. 2001. Microdiamond daughter crystals precipitated from supercritical COH+silicate fluids included in garnet, Erzgebirge, Germany. Geology, 29: 391-394
[93]  Sweeney R J, Prozesky V, Przybylowicz W. 1995. Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18-46 kb pressure. Geochim Cosmochim Acta, 59: 3671-3683
[94]  Tao R, Fei Y, Zhang L. 2013. Experimental determination of siderite stability at high pressure. Am Mineral, 98: 1565-1572
[95]  Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Oxford: Blackwell Science. 211
[96]  Wallis S, Tsuboi M, Suzuki K, Fanning M, Jiang L, Tanaka T. 2005. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 33: 129-132
[97]  Wang C G, Liang Y, Xu W L, Dygert N. 2013. Effect of melt composition on basalt and peridotite interaction: laboratory dissolution experiments with applications to mineral compositional variations in mantle xenoliths form the North China Craton. Contrib Mineral Petrol, 166: 1469-1488natexis of UHP quartzite during continental collision in the Sulu orogen. J Metamorphic Geol, 31: 389-413
[98]  Chen Y X, Zheng Y F, Hu Z C. 2013b. Synexhumation anatexis of ultrahigh-pressure metamorphic rocks: Petrological evidence from granitic gneiss in the Sulu orogen. Lithos, 156-159: 69-96
[99]  Chen Y X, Zheng Y F, Gao X Y, Hu Z C. 2014. Multiphase solid inclusions in zoisite-bearing eclogite: Evidence for partial melting of ultrahigh-pressure metamorphic rocks during continental collision. Lithos, 200-201: 1-21
[100]  Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1-14
[101]  Chung S L, Liu D Y, Ji J Q, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q, Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021-1024
[102]  Cloos M, Shreve R L. 1988a. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 1, Background and description. Pure Appl Geophys, 128: 455-500
[103]  Cloos M, Shreve R L. 1988b. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 2, Implications and discussion. Pure Appl Geophys, 128: 501-505
[104]  Dai L Q, Zhao Z F, Zheng Y F, Li Q L, Yang Y H, Dai M N. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett, 308: 224-244
[105]  Dai L Q, Zhao Z F, Zheng Y F, Zhang J. 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen. Chem Geol, 334: 99-121
[106]  Dai L Q, Zhao Z F, Zheng Y F. 2015. Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong''an-Dabie orogens. Gondwana Res, 27: 1236-1254
[107]  Dalton J A, Presnall D C. 1998. The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: Data from the system CaO-MgOAl2O3-SiO2-CO2 at 6 GPa. J Petrol, 39: 1953-1964
[108]  Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73-85
[109]  Dasgupta R, Hirschmann M M, Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol, 149: 288-305
[110]  Dasgupta R, Hirschmann M M. 2006. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature, 440: 659-662
[111]  Dasgupta R, Hirschmann M M, Smith N D. 2007a. Partial melting experiments of peridotite+CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol, 48: 2093-2124
[112]  Dasgupta R, Hirschmann M M, Smith N D. 2007b. Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges. Geology, 35: 135-138
[113]  Dasgupta R, Hirschmann M M, McDonough W F, Spiegelman M, Withers A C. 2009. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle derived melts. Chem Geol, 262: 57-77
[114]  Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett, 298: 1-13
[115]  Dasgupta R, Mallik A, Tsuno K, Withers A C, Hirth G, Hirschmann M M. 2013. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature, 493: 211-215
[116]  Foley S F, Yaxley G M, Rosenthal A, Buhre S, Kiseeva E S, Rapp R P, Jacob D E. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos, 112S: 274-283
[117]  Gao X Y, Zheng Y F, Chen Y X. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. J Metamorphic Geol, 30: 193-212
[118]  Gao X Y, Zheng Y F, Chen Y X, Hu Z. 2013. Trace element composition of continentally subducted slab-derived melt: insight from multiphase solid inclusions in ultrahigh-pressure eclogite in the Dabie orogen. J Metamorphic Geol, 31: 453-468
[119]  Gao Y F, Hou Z Q, Kamber B S, Wei R H, Meng X J, Zhao R S. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contrib Mineral Petrol, 153: 105-120
[120]  Gerya T V, St?ckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21: 1056, doi: 10.1029/2002TC001406
[121]  Girnis A V, Bulatov V K, Lahaye Y, Brey G P. 2006. Partitioning of trace elements between carbonate-silicate melts and mantle minerals: Experiment and petrological consequences. Petrology, 14: 492-514
[122]  Girnis A V, Bulatov V K, Brey G P. 2011. Formation of primary kimberlite melts-constraints from experiments at 6-12 GPa and variable CO2/H2O. Lithos, 127: 401-413
[123]  Gordon S M, Whitney D L, Teyssier C, Fossen H. 2013. U-Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway: Significance for history of partial melting in continental subduction. Lithos 170-171: 35-53
[124]  Grassi D, Schmidt M W. 2011. The melting of carbonated pelites from 70 to 700 km depth. J Petrol, 52: 765-789
[125]  Grassi D, Schmidt M W, Günther D. 2012. Element partitioning during carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature in the EM mantle components. Earth Planet Sci Lett, 327-328: 84-96
[126]  Gudfinnsson G H, Presnall D C. 2005. Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 GPa. J Petrol, 46: 1645-1659
[127]  Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin: Springer-Verlag. 175-205
[128]  Guo S, Ye K, Chen Y, Liu J, Mao Q, Ma Y. 2012. Fluid-rock interaction and element mobilization in UHP metabasalt: Constraints from an omphacite-epidote vein and host eclogites in the Dabie orogen. Lithos, 136-139: 145-167
[129]  Hirose K. 1997. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett, 24: 2837-2840
[130]  Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol, 262: 229-245
[131]  Klemme S, van der Laan S R, Foley S F, Günther D. 1995. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper-mantle conditions. Earth Planet Sci Lett, 133: 439-448
[132]  Kogiso T, Hirose K, Takahashi E. 1998. Melting experiments on homogeneous mixtures of peridotite and basalt: Application to the genesis of ocean island basalts. Earth Planet Sci Lett, 162: 45-61
[133]  Korsakov A V, Hermann J. 2006. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett, 241: 104-118
[134]  Mallik A, Dasgupta R. 2012. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett, 329-330: 97-108
[135]  Mallik A, Dasgupta R. 2013. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas. J Petrol, 54: 2267-2300
[136]  Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1-16
[137]  Martin A M, Laporte D, Koga K T, Kawamoto T, Hammouda T. 2012. Experimental study of the stability of a dolomite+coesite assemblage in contact with peridotite: Implications for sediment-mantle interaction and diamond formation during subduction. J Petrol, 53: 391-417
[138]  Massonne H J. 2003. A comparison of the evolution of diamondiferous quartz-rich rocks from the Saxonian Erzgebirge and the Kokchetav Massif: Are so-called diamondiferous gneisses magmatic rocks? Earth Planet Sci Lett, 216: 347-364
[139]  Mo X X, Niu Y L, Dong G C, Zhao Z D, Hou Z Q, Zhou S, Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem Geol, 250: 49-67
[140]  Nicholls I A, Ringwood A E. 1973. Effect of water on olivine stability in tholeiites and production of silica-saturated magmas in the island arc environment. J Geol, 81: 285-300
[141]  Nomade S, Renne P R, Mo X X, Zhao Z D, Zhou S. 2004. Miocene volcanism in the Lhasa block, Tibet: Spatial trends and geodynamic implications. Earth Planet Sci Lett, 221: 227-243
[142]  Pati?o Douce A E, Beard J S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol, 36: 707-738
[143]  Pati?o Douce A E. 2005. Vapor-absent melting of tonalite at 15-32 kbar. J Petrol, 46: 275-290
[144]  Perchuk A L, Burchard M, Maresch W V, Schertl H P. 2005. Fluid-mediated modification of garnet interiors under ultrahigh-pressure conditions. Terra Nova, 17: 545-553
[145]  Perchuk A L, Burchard M, Maresch W V, Schertl H P. 2008. Melting of hydrous and carbonate mineral inclusions in garnet host during ultrahigh pressure experiments. Russ Geol Geophys, 103: 25-45
[146]  Perchuk A L, Shur M Yu, Yapaskurt V O, Podgornova S T. 2013. Experimental modeling of mantle metasomatism coupled with eclogitization of crustal material in a subduction zone. Petrology, 21: 579-598
[147]  Perchuk A L, Yapaskurt V O. 2013. Experimental simulation of orthopyroxene enrichment and carbonation in the suprasubduction mantle under the influence of H2O, CO2, and SiO2. Geochem Int, 51: 257-268
[148]  Qian Q, Hermann J. 2013. Partial melting of lower crust at 10-15 kbar: Constraints on adakite and TTG formation. Contrib Mineral Petrol, 165: 1195-1224
[149]  Qu X M, Hou Z Q, Li Y G. 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74: 131-148
[150]  陈建林, 许继峰, 康志强, 王保弟. 2007. 青藏高原西南部查孜地区中新世钾质火山岩地球化学及其成因. 地球化学, 36: 437-447
[151]  陈竟志, 姜能. 2011. 胶东晚三叠世碱性岩浆作用的岩石成因—来自锆石U-Pb年龄、Hf-O同位素的证据. 岩石学报, 27: 3557-3574
[152]  郭敬辉, 陈福坤, 张晓曼, Siebel W, 翟明国. 2005. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程: 锆石U-Pb年代学. 岩石学报, 21: 1281-1301
[153]  刘福来, 薛怀民, 刘平华. 2009. 苏鲁超高压岩石部分熔融时间的准确限定: 来自含黑云母花岗岩中锆石U-Pb定年、REE和Lu-Hf同位素的证据. 岩石学报, 25: 1039-1055
[154]  王超, 金振民, 高山, 章军锋, 郑曙. 2010. 华北克拉通岩石圈破坏的榴辉岩熔体-橄榄岩反应机制: 实验约束. 中国科学: 地球科学, 40: 541-555
[155]  王永锋, 章军锋. 2013. 斜方辉石筛状反应边的成因机制及其对岩石圈地幔性质转变的意义. 岩石矿物学杂志, 32: 604-612
[156]  赵志丹, 莫宣学, Nomade S, Renne P R, 周肃, 董国臣, 王亮亮, 朱弟成, 廖忠礼. 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义. 岩石学报, 22: 787-794
[157]  赵子福, 郑永飞. 2009. 俯冲大陆岩石圈重融: 大别-苏鲁造山带中生代岩浆岩成因. 中国科学D辑: 地球科学, 39: 888-909
[158]  曾令森, 高丽娥, 于俊杰, 胡古月. 2011. 苏鲁仰口超高压岩石SHRIMP锆石U/Pb定年与部分熔融时限. 岩石学报, 27: 1085-1094
[159]  曾令森, 梁凤华, Asimow P, 陈方远, 陈晶. 2009. 深俯冲陆壳岩石部分熔融与苏鲁超高压榴辉岩中长英质多晶包裹体的形成. 科学通报, 54: 1826-1840
[160]  郑永飞, 赵子福, 陈伊翔. 2013. 大陆俯冲隧道过程: 大陆碰撞过程中的板片界面相互作用. 科学通报, 58: 2233-2239
[161]  Allègre C J. 1982. Chemical geodynamics. Tectonophysics, 81: 109-132
[162]  Auzanneau E, Vielzeuf D, Schmidt M W. 2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol, 152: 125-148
[163]  Beard J S, Lofgren G E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kbar. J Petrol, 32: 365-401
[164]  Beaumont C, Ellis S, Pfiffner A. 1999. Dynamics of sediment subduction-accretion at convergent margins: Short-term modes, long-term deformation, and tectonic implications. J Geophys Res, 104: 17573-17601
[165]  Girnis A V, Bulatov V K, Brey G P. 2011. Formation of primary kimberlite melts-constraints from experiments at 6-12 GPa and variable CO2/H2O. Lithos, 127: 401-413
[166]  Gordon S M, Whitney D L, Teyssier C, Fossen H. 2013. U-Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway: Significance for history of partial melting in continental subduction. Lithos 170-171: 35-53
[167]  Grassi D, Schmidt M W. 2011. The melting of carbonated pelites from 70 to 700 km depth. J Petrol, 52: 765-789
[168]  Grassi D, Schmidt M W, Günther D. 2012. Element partitioning during carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature in the EM mantle components. Earth Planet Sci Lett, 327-328: 84-96
[169]  Gudfinnsson G H, Presnall D C. 2005. Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 GPa. J Petrol, 46: 1645-1659
[170]  Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin: Springer-Verlag. 175-205
[171]  Guo S, Ye K, Chen Y, Liu J, Mao Q, Ma Y. 2012. Fluid-rock interaction and element mobilization in UHP metabasalt: Constraints from an omphacite-epidote vein and host eclogites in the Dabie orogen. Lithos, 136-139: 145-167
[172]  Guo Z F, Wilson M, Liu J Q. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96: 205-224
[173]  Hermann J. 2002. Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol, 143: 219-235
[174]  Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92: 399-417
[175]  Hermann J, Zheng Y F, Rubatto D. 2013. Deep Fluids in Subducted Continental Crust. Elements, 9: 281-287
[176]  Hermann J, Rubatto D. 2014. Subduction of Continental Crust to Mantle Depth. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry: Geochemistry of Ultrahigh-Pressure Rocks. Amsterdam: Elsevier. 309-340
[177]  Hirose K. 1997. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett, 24: 2837-2840
[178]  Hou Z Q, Gao Y F, Qu X M, Rui Z Y, Mo X X. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett, 220: 139-155
[179]  Hwang S L, Shen P Y, Yui T F, Chu H T. 2003. Metal-sulfur-COH-silicate fluid mediated diamond nucleation in Kokchetav ultrahigh-pressure gneiss. Eur J Mineral, 15: 503-511
[180]  Irving A J, Wyllie P J. 1975. Subsolidus and melting relationships for calcite, magnesite and join CaCO3-MgCO3 to 36 kbar. Geochim Cosmochim Acta, 39: 35-53
[181]  Ivanov B A, Deutsch A. 2002. The phase diagram of CaCO3 in relation to shock compression and decomposition. Phys Earth Planet Int, 129: 131-143
[182]  Jahn B M, Wu F, Lo C H, Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem Geol, 157: 119-146
[183]  Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol, 262: 229-245
[184]  Klemme S, van der Laan S R, Foley S F, Günther D. 1995. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper-mantle conditions. Earth Planet Sci Lett, 133: 439-448
[185]  Kogiso T, Hirose K, Takahashi E. 1998. Melting experiments on homogeneous mixtures of peridotite and basalt: Application to the genesis of ocean island basalts. Earth Planet Sci Lett, 162: 45-61
[186]  Korsakov A V, Hermann J. 2006. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett, 241: 104-118
[187]  Labrousse L, Prouteau G, Ganzhorn A C. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology, 39: 1171-1174
[188]  Lang H M, Gilotti J A. 2007. Partial melting of metapelites at ultrahigh-pressure conditions, Greenland Caledonides. Contrib Mineral Petrol, 25: 129-147
[189]  Liu F L, Robinson P T, Liu P H. 2012. Multiple partial melting events in the Sulu UHP terrane: Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. J Metamorphic Geol, 30: 887-906
[190]  Liu P L, Wu Y, Liu Q, Zhang L, Jin Z. 2014. Partial melting of UHP calc-gneiss from the Dabie Mountains. Lithos, 192-195: 86-101
[191]  Liu P L, Wu Y, Chen Y, Zhang J, Jin Z. 2015. UHP impure marbles fromthe Dabie Mountains: Metamorphic evolution and carbon cycling in continental subduction zones. Lithos, 212-215: 280-297
[192]  Liu Q, Hermann J, Zhang J F. 2013. Polyphase inclusions in the Shuanghe UHP eclogites formed by subsolidus transformation and incipient melting during exhumation of deeply subducted crust. Lithos, 177: 91-109
[193]  Liu X C, Wu Y B, Gao S, Wang H, Zheng J P, Hu Z C, Zhou L, Yang S H. 2014. Record of multiple stage channelized fluid and melt activities in deeply subducted slab from zircon U-Pb age and Hf-O isotope compositions. Geochim Cosmochim Acta, 144: 1-24
[194]  Malaspina N, Hermann J, Scambelluri M, Compagnoni R. 2006. Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth Planet Sci Lett, 249: 173-187
[195]  Malaspina N, Hermann J, Scambelluri M. 2009. Fluid/mineral interaction in UHP garnet peridotite. Lithos, 107: 38-52
[196]  Mallik A, Dasgupta R. 2012. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett, 329-330: 97-108
[197]  Mallik A, Dasgupta R. 2013. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas. J Petrol, 54: 2267-2300
[198]  Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1-16
[199]  Martin A M, Laporte D, Koga K T, Kawamoto T, Hammouda T. 2012. Experimental study of the stability of a dolomite+coesite assemblage in contact with peridotite: Implications for sediment-mantle interaction and diamond formation during subduction. J Petrol, 53: 391-417
[200]  Massonne H J. 2003. A comparison of the evolution of diamondiferous quartz-rich rocks from the Saxonian Erzgebirge and the Kokchetav Massif: Are so-called diamondiferous gneisses magmatic rocks? Earth Planet Sci Lett, 216: 347-364
[201]  Mo X X, Niu Y L, Dong G C, Zhao Z D, Hou Z Q, Zhou S, Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem Geol, 250: 49-67
[202]  Nicholls I A, Ringwood A E. 1973. Effect of water on olivine stability in tholeiites and production of silica-saturated magmas in the island arc environment. J Geol, 81: 285-300
[203]  Nomade S, Renne P R, Mo X X, Zhao Z D, Zhou S. 2004. Miocene volcanism in the Lhasa block, Tibet: Spatial trends and geodynamic implications. Earth Planet Sci Lett, 221: 227-243
[204]  Pati?o Douce A E, Beard J S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol, 36: 707-738
[205]  Pati?o Douce A E. 2005. Vapor-absent melting of tonalite at 15-32 kbar. J Petrol, 46: 275-290
[206]  Perchuk A L, Burchard M, Maresch W V, Schertl H P. 2005. Fluid-mediated modification of garnet interiors under ultrahigh-pressure conditions. Terra Nova, 17: 545-553
[207]  Perchuk A L, Burchard M, Maresch W V, Schertl H P. 2008. Melting of hydrous and carbonate mineral inclusions in garnet host during ultrahigh pressure experiments. Russ Geol Geophys, 103: 25-45
[208]  Perchuk A L, Shur M Yu, Yapaskurt V O, Podgornova S T. 2013. Experimental modeling of mantle metasomatism coupled with eclogitization of crustal material in a subduction zone. Petrology, 21: 579-598
[209]  Perchuk A L, Yapaskurt V O. 2013. Experimental simulation of orthopyroxene enrichment and carbonation in the suprasubduction mantle under the influence of H2O, CO2, and SiO2. Geochem Int, 51: 257-268
[210]  Qian Q, Hermann J. 2013. Partial melting of lower crust at 10-15 kbar: Constraints on adakite and TTG formation. Contrib Mineral Petrol, 165: 1195-1224
[211]  Qu X M, Hou Z Q, Li Y G. 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74: 131-148
[212]  Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. J Petrol, 36: 891-931
[213]  Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335-356
[214]  Rapp R P, Norman M D, Laporte D, Yaxley G M, Martin H, Foley S F. 2010. Continent formation in the Archean and chemical evolution of the cratonic lithosphere: Melt-rock reaction experiments at 3-4 GPa and petrogenesis of Archean Mg-diorites (sanukitoids). J Petrol, 51: 1237-1266
[215]  Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054-1058
[216]  Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Rudnick R L, ed. Treatise in Geochemistry: The Crust. Amsterdam: Elsevier. 1-64
[217]  Russell J K, Porritt L A, Lavallée Y, Dingwell D B. 2012. Kimberlite ascent by assimilation-fuelled buoyancy. Nature, 481: 352-357
[218]  Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydration slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361-379
[219]  Sekine T, Wyllie P J. 1982a. Phase relationships in the system KAlSiO4-Mg2SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Mineral Petrol, 79: 368-374
[220]  Sekine T, Wyllie P J. 1982b. The system granite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contrib Mineral Petrol, 81: 190-202
[221]  Sekine T, Wyllie P J. 1983. Experimental simulation of mantle hybridization in subduction zones. J Geol, 91: 511-528
[222]  Sen C, Dunn T. 1994a. Dehydration melting of a basaltic composition amphibolite at 1.5 GPa and 2.0 GPa: Implication for the origin of adakites. Contrib Mineral Petrol, 117: 394-409
[223]  Guo Z F, Wilson M, Liu J Q. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96: 205-224
[224]  Hermann J. 2002. Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol, 143: 219-235
[225]  Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92: 399-417
[226]  Hermann J, Zheng Y F, Rubatto D. 2013. Deep Fluids in Subducted Continental Crust. Elements, 9: 281-287
[227]  Hermann J, Rubatto D. 2014. Subduction of Continental Crust to Mantle Depth. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry: Geochemistry of Ultrahigh-Pressure Rocks. Amsterdam: Elsevier. 309-340
[228]  Hou Z Q, Gao Y F, Qu X M, Rui Z Y, Mo X X. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett, 220: 139-155
[229]  Hwang S L, Shen P Y, Yui T F, Chu H T. 2003. Metal-sulfur-COH-silicate fluid mediated diamond nucleation in Kokchetav ultrahigh-pressure gneiss. Eur J Mineral, 15: 503-511
[230]  Irving A J, Wyllie P J. 1975. Subsolidus and melting relationships for calcite, magnesite and join CaCO3-MgCO3 to 36 kbar. Geochim Cosmochim Acta, 39: 35-53
[231]  Ivanov B A, Deutsch A. 2002. The phase diagram of CaCO3 in relation to shock compression and decomposition. Phys Earth Planet Int, 129: 131-143
[232]  Jahn B M, Wu F, Lo C H, Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem Geol, 157: 119-146
[233]  Labrousse L, Prouteau G, Ganzhorn A C. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology, 39: 1171-1174
[234]  Lang H M, Gilotti J A. 2007. Partial melting of metapelites at ultrahigh-pressure conditions, Greenland Caledonides. Contrib Mineral Petrol, 25: 129-147
[235]  Litvinovsky B A, Steele I M, Wickham S M. 2000. Silicic magma formation in overthickened crust: Melting of charnockite and leucogranite at 15, 20 and 25 kbar. J Petrol, 41: 717-737
[236]  Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahihg-pressure minerals and metamorphic terranes-The view from China. J Asian Earth Sci, 35: 199-231
[237]  Liu F L, Xu Z Q, Liou J G, Song B. 2004. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. J Metamorphic Geol, 22: 315-326
[238]  Liu F L, Gerdes A, Liou J G, Xue H M, Liang F H. 2006. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, South China: Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. J Metamorphic Geol, 24: 569-589
[239]  Liu F L, Gerdes A, Zeng L S, Xue H. 2008. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China. Geochim Cosmochim Acta, 72: 2973-3000
[240]  Liu F L, Robinson P T, Gerdes A, Xue H, Liu P, Liou J G. 2010. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: constraints on the timing and nature of partial melting. Lithos, 117: 247-268
[241]  Liu F L, Robinson P T, Liu P H. 2012. Multiple partial melting events in the Sulu UHP terrane: Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. J Metamorphic Geol, 30: 887-906
[242]  Liu P L, Wu Y, Liu Q, Zhang L, Jin Z. 2014. Partial melting of UHP calc-gneiss from the Dabie Mountains. Lithos, 192-195: 86-101
[243]  Liu P L, Wu Y, Chen Y, Zhang J, Jin Z. 2015. UHP impure marbles fromthe Dabie Mountains: Metamorphic evolution and carbon cycling in continental subduction zones. Lithos, 212-215: 280-297
[244]  Liu Q, Hermann J, Zhang J F. 2013. Polyphase inclusions in the Shuanghe UHP eclogites formed by subsolidus transformation and incipient melting during exhumation of deeply subducted crust. Lithos, 177: 91-109
[245]  Liu X C, Wu Y B, Gao S, Wang H, Zheng J P, Hu Z C, Zhou L, Yang S H. 2014. Record of multiple stage channelized fluid and melt activities in deeply subducted slab from zircon U-Pb age and Hf-O isotope compositions. Geochim Cosmochim Acta, 144: 1-24
[246]  Malaspina N, Hermann J, Scambelluri M, Compagnoni R. 2006. Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth Planet Sci Lett, 249: 173-187
[247]  Malaspina N, Hermann J, Scambelluri M. 2009. Fluid/mineral interaction in UHP garnet peridotite. Lithos, 107: 38-52
[248]  Wen D R, Liu D Y, Chung S L, Chu M F, Ji J Q, Zhang Q, Song B, Lee T Y, Yeh M W, Lo C H. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chem Geol, 252: 191-201
[249]  Wolf M B, Wyllie P J. 1994. Dehydration-melting of amphibolite at 10 kbar: The effects of temperature and time. Contrib Mineral Petrol, 115: 369-383
[250]  Wu Y B, Zheng Y F, Zhao Z F., Gong B, Liu X, Wu F Y. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochim Cosmochim Acta, 70: 3743-3761
[251]  Wyllie P J, Sekine T. 1982. The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol, 79: 375-380
[252]  Wyllie P J, Carroll M R, Johnston A D, Rutter M J, Sekine T, Van Der Laan S R. 1989. Interactions among magmas and rocks in subduction zone regions: experimental studies from slab to mantle to crust. Eur J Mineral, 1: 165-179
[253]  Xia Q X, Zheng Y F, Zhou L G. 2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chem Geol, 247: 36-65
[254]  Xie Z, Zheng Y F, Zhao Z F, Wu Y B, Wang Z R, Chen J F, Liu X M, Wu F Y. 2006. Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chem Geol, 231: 214-235
[255]  Xiong X L, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem Geol, 218: 339-359
[256]  Xu H J, Ma C Q, Ye K. 2007. Early Cretaceous granitoids and their implications for Collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry. Chem Geol, 240: 238-259
[257]  Xu H J, Ma C Q, Zhang J F. 2012a. Generation of Early Cretaceous high-Mg adakitic host and enclaves by magma mixing, Dabie orogen, Eastern China. Lithos, 142-143: 182-200
[258]  Xu H J, Ma C Q, Zhang J F, Ye K. 2012b. Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China: Petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Res, 23: 190-207
[259]  Xu H J, Ma C Q, Song Y R, Zhang J F, Ye K. 2012c. Early Cretaceous intermediate-mafic dykes in the Dabie orogen, eastern China: Petrogenesis and implications for crust-mantle interaction. Lithos, 154: 83-99
[260]  Xu H J, Ye K, Song Y, Chen Y, Zhang J F, Liu Q, Guo S. 2013. Prograde metamorphism, decompressional partial melting and subsequent melt fractional crystallization in the Weihai migmatitic gneisses, Sulu UHP terrane, eastern China. Chem Geol, 341: 16-37
[261]  Xu H J, Zhang J F, Wang Y F, Liu W L. 2015. Late Triassic alkaline complex in the Sulu UHP terrane: Implications for post-collisional magmatism and subsequent fractional crystallization. Gondwana Res, doi: 10.1016/j.gr.2015.05.017
[262]  Xu W C, Zhang H F, Guo L, Yuan H L. 2009. Miocene high Sr/Y magmatism, south Tibet: Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos, 114: 293-306
[263]  Xu W L, Zhou Q J, Pei F P, Yang D B, Gao S, Li Q L, Yang Y H. 2013. Destruction of the North China Craton: delamination or thermal/Chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths. Gondwana Res, 23: 119-129
[264]  Xu S T, Okay A I, Ji S, Sengor A M C, Su W, Liu Y, Jiang L. 1992. Diamond from the Dabie Shan meta-morphic rocks and its implication for tectonic setting. Science, 256: 80-82
[265]  Yang J H, Chung S L, Wilde S A, Wu F Y, Chu M F, Lo C H, Fan H R. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chem Geol, 214: 99-125
[266]  Yang Q L, Zhao Z F, Zheng Y F. 2012a. Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 146-147: 164-182
[267]  Yang Q L, Zhao Z F, Zheng Y F. 2012b. Slab-mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155: 442-460
[268]  Yang D B, Xu W L, Pei F P, Yang C H, Wang Q H. 2012. Spatial extent of the influence of the deeply subducted Yangtze slab on the eastern North China Craton lithosphere: Constraints from Sr-Nd-Pb isotopic compositions of Mesozoic mafic igneous rocks in western Shandong, China. Lithos, 136-139: 246-260
[269]  Yaxley G M. 2000. Experimental study of the phase and melting relations of homogeneous basalt plus peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib Mineral Petrol, 139, 326-338
[270]  Yaxley G M, Brey G P. 2004. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib Mineral Petrol, 146: 606-619
[271]  Ye K, Cong B L, Ye D N. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734-736
[272]  Zhao Z F, Zheng Y F, Wei C S, Wu F Y. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture. Lithos, 126: 99-114
[273]  Zhao Z F, Zheng Y F, Zhang J, Dai L Q, Li Q, Liu X. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol, 328: 70-88
[274]  Zheng Y F, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth Planets Space, 66: 93, doi: 10. 1186/1880-5981-66-93
[275]  Zhou L G, Xia Q X, Zheng Y F, Chen R X, Hu Z C, Yang Y H. 2015. Tectonic evolution from oceanic subduction to continental collision during the closure of Paleotethyan ocean: Geochronological and geochemical constraints from metamorphic rocks in the Hong’an orogen. Gondwana Res, 28: 348-370
[276]  Zindler A, Hart S. 1986. Chemical geodynamics. Annu Rev Earth Planet Sci, 14: 493-571
[277]  Zong K Q, Liu Y S, Hu Z C, et al. 2010. Melting-induced fluid flow during exhumation of gneisses of the Sulu ultrahigh-pressure terrane. Lithos, 120: 490-510 ?

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133