Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. J Petrol, 36: 891-931
[2]
Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335-356
[3]
Rapp R P, Norman M D, Laporte D, Yaxley G M, Martin H, Foley S F. 2010. Continent formation in the Archean and chemical evolution of the cratonic lithosphere: Melt-rock reaction experiments at 3-4 GPa and petrogenesis of Archean Mg-diorites (sanukitoids). J Petrol, 51: 1237-1266
[4]
Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054-1058
[5]
Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Rudnick R L, ed. Treatise in Geochemistry: The Crust. Amsterdam: Elsevier. 1-64
[6]
Russell J K, Porritt L A, Lavallée Y, Dingwell D B. 2012. Kimberlite ascent by assimilation-fuelled buoyancy. Nature, 481: 352-357
[7]
Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydration slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361-379
[8]
Sekine T, Wyllie P J. 1982a. Phase relationships in the system KAlSiO4-Mg2SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Mineral Petrol, 79: 368-374
[9]
Sekine T, Wyllie P J. 1982b. The system granite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contrib Mineral Petrol, 81: 190-202
[10]
Sekine T, Wyllie P J. 1983. Experimental simulation of mantle hybridization in subduction zones. J Geol, 91: 511-528
[11]
Sen C, Dunn T. 1994a. Dehydration melting of a basaltic composition amphibolite at 1.5 GPa and 2.0 GPa: Implication for the origin of adakites. Contrib Mineral Petrol, 117: 394-409
[12]
Sen C, Dunn T. 1994b. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contrib Mineral Petrol, 119: 422-432
[13]
Shatsky V S, Jagoutz E, Sobolev N V, Kozmenko O A, Parkhomenko V S, Troesch M. 1999. Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). Contrib Mineral Petrol, 137: 185-205
[14]
Shaw C S J, Dingwell D B. 2008. Experimental peridotite-melt reaction at one atmosphere: A textural and chemical study. Contrib Mineral Petrol, 155: 199-214
[15]
Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, mélange formation, and prism accretion. J Geophys Res, 91: 10229-10245
[16]
Skjerlie K P, Johnston A D. 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J Petrol, 37: 661-691
[17]
Skjerlie K P, Pati?o Douce A E. 2002. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa: Implications for melting in thickened continental crust and for subduction-zone processes. J Petrol, 43: 291-314
[18]
Song Y R, Xu H J, Zhang J F, Wang D Y, Liu E D. 2014a. Syn-exhumation partial melting and melt segregation in the Sulu UHP terrane: Evidences from leucosome and pegmatitic vein of migmatite. Lithos, 202-203: 55-75
[19]
Song Y R, Xu H J, Zhang J F, Wang D Y, Liu E D. 2014b. Effects of melt fractional crystallization on Sr-Nd and Lu-Hf isotope systems: A case study of Triassic migmatite in the Sulu UHP terrane. Int Geol Rev, 56: 783-800
[20]
Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos, 170: 208-223
[21]
Springer W, Seck H A. 1997. Partial fusion of basic granulite at 5 to 15 kbar: Implications for the origin of TTG magmas. Contrib Mineral Petrol, 127: 30-45
[22]
St?ckhert B, Duyster J, Trepmann C, Massonne H J. 2001. Microdiamond daughter crystals precipitated from supercritical COH+silicate fluids included in garnet, Erzgebirge, Germany. Geology, 29: 391-394
[23]
Sweeney R J, Prozesky V, Przybylowicz W. 1995. Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18-46 kb pressure. Geochim Cosmochim Acta, 59: 3671-3683
[24]
Tao R, Fei Y, Zhang L. 2013. Experimental determination of siderite stability at high pressure. Am Mineral, 98: 1565-1572
[25]
Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Oxford: Blackwell Science. 211
[26]
Wallis S, Tsuboi M, Suzuki K, Fanning M, Jiang L, Tanaka T. 2005. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 33: 129-132
[27]
Wang C G, Liang Y, Xu W L, Dygert N. 2013. Effect of melt composition on basalt and peridotite interaction: laboratory dissolution experiments with applications to mineral compositional variations in mantle xenoliths form the North China Craton. Contrib Mineral Petrol, 166: 1469-1488
[28]
Wang L, Kusky T M, Polat A, Wang S J, Jiang X F, Zong K Q, Wang J P, Deng H, Fu J M. 2014. Partial melting of deeply subducted eclogite from the Sulu orogen in China. Natu Commun, 5: 5604, doi: 10.1038/ncomms6604
[29]
Wang Q, Wyman D A, Xu J F, Jian P, Zhao Z H, Li C F, Xu W, Ma J L, He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta, 71: 2609-2636
[30]
Wang X, Liu J G, Mao H K. 1989. Coesite-bearing eclogite from the Dabie Mountain in central China. Geology, 17: 1085-1088
[31]
Whitney D L, Teyssier C, Rey P F. 2009. The consequences of crustal melting in continental subduction. Lithosphere, 1: 323-327
[32]
Zhang J F, Wang C, Wang Y F. 2012. Experimental constraints on the destruction mechanism of the North China Craton. Lithos, 149: 91-99
[33]
Zhang J, Zhao Z F, Zheng Y F, Liu X M, Xie L W. 2012. Zircon Hf-O isotope and whole-rock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos, 136-139: 225-245
[34]
Zhang R Y, Yang J S, Wooden J L, Liou J G, Li T F. 2005. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implication for mantle metasomatism and subduction-zone UHP metamorphism. Earth Planet Sci Lett, 237: 729-734
[35]
Zhang Z M, Dong X, Liou J G, Liu F, Wang W, Yui F. 2011. Metasomatism of garnet peridotite from Jiangzhuang, southern Sulu UHP belt: Constraints on the interactions between crust and mantle rocks during subduction of continental lithosphere. J Metamorph Geol, 29: 917-937
[36]
Zhao Z D, Mo X X, Dilek Y, Niu Y, DePaolo D J, Robinson P, Zhu D, Sun C, Dong G, Zhou S, Luo Z, Hou Z. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113: 190-212
[37]
Zhao Z F, Zheng Y F, Chen R X, Xia Q X, Wu Y B. 2007. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochim Cosmochim Acta, 71: 5244-5266
[38]
Zhao Z F, Dai L Q, Zheng Y F. 2013. Postcollisional mafic ignieous rocks record crust-mantle interaction during continental deep subduction. Scientific Reports, 3: 3413, doi: 10.1038/srep03413
[39]
Zheng Y F. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J Geol Soc Lond, 166: 763-782
[40]
Zheng Y F, Xia Q X, Chen, R X, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev, 107: 342-374
[41]
Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5-48
[42]
Beaumont C, Jamieson R A, Butler J P, Warren C J. 2009. Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett, 287: 116-129
[43]
Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth Planet Sci Lett, 260: 373-393
[44]
Bercovici D, Karato S. 2003. Whole-mantle convection and the transition-zone water filter. Nature, 425: 39-44
[45]
Blundy J, Dalton J. 2000. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol, 139: 356-371
[46]
Brey G P, Bulatov V K, Girnis A V, Lahaye Y. 2008. Experimental melting of carbonated peridotite at 6-10 GPa. J Petrol, 49: 797-821
[47]
Brey G P, Bulatov V K, Girnis A V. 2009. Influence of water and fluorine on melting of carbonated peridotite at 6 and 10 GPa. Lithos, 112: 249-259
[48]
Bulatov V K, Brey G P, Girnis A V, Gerdes A, H?fer H E. 2014. Carbonated sediment-peridotite interaction and melting at 7.5-12 GPa. Lithos, 200-201: 368-385
[49]
Carroll M R, Wyllie P J. 1989. Granite melt convecting in an experimental micro-magma chamber at 1050℃, 15 kbar. Eur J Mineral, 1: 249-260
[50]
Chen J F, Xie Z, Li H M, Zhang X D, Zhou T X, Park Y S, Ahn K S, Chen D G, Zhang X. 2003. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane. China Geochem J, 37: 35-46
[51]
Chen Y X, Zheng Y F, Hu Z C. 2013a. Petrological and zircon evidence for anatexis of UHP quartzite during continental collision in the Sulu orogen. J Metamorphic Geol, 31: 389-413
[52]
Chen Y X, Zheng Y F, Hu Z C. 2013b. Synexhumation anatexis of ultrahigh-pressure metamorphic rocks: Petrological evidence from granitic gneiss in the Sulu orogen. Lithos, 156-159: 69-96
[53]
Chen Y X, Zheng Y F, Gao X Y, Hu Z C. 2014. Multiphase solid inclusions in zoisite-bearing eclogite: Evidence for partial melting of ultrahigh-pressure metamorphic rocks during continental collision. Lithos, 200-201: 1-21
[54]
Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1-14
[55]
Chung S L, Liu D Y, Ji J Q, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q, Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021-1024
[56]
Cloos M, Shreve R L. 1988a. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 1, Background and description. Pure Appl Geophys, 128: 455-500
[57]
Cloos M, Shreve R L. 1988b. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 2, Implications and discussion. Pure Appl Geophys, 128: 501-505
[58]
Dai L Q, Zhao Z F, Zheng Y F, Li Q L, Yang Y H, Dai M N. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett, 308: 224-244
[59]
Dai L Q, Zhao Z F, Zheng Y F, Zhang J. 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen. Chem Geol, 334: 99-121
[60]
Dai L Q, Zhao Z F, Zheng Y F. 2015. Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong''an-Dabie orogens. Gondwana Res, 27: 1236-1254
[61]
Dalton J A, Presnall D C. 1998. The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: Data from the system CaO-MgOAl2O3-SiO2-CO2 at 6 GPa. J Petrol, 39: 1953-1964
[62]
Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73-85
[63]
Dasgupta R, Hirschmann M M, Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol, 149: 288-305
[64]
Dasgupta R, Hirschmann M M. 2006. Melting in the Earth''s deep upper mantle caused by carbon dioxide. Nature, 440: 659-662
[65]
Dasgupta R, Hirschmann M M, Smith N D. 2007a. Partial melting experiments of peridotite+CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol, 48: 2093-2124
[66]
Dasgupta R, Hirschmann M M, Smith N D. 2007b. Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges. Geology, 35: 135-138
[67]
Dasgupta R, Hirschmann M M, McDonough W F, Spiegelman M, Withers A C. 2009. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle derived melts. Chem Geol, 262: 57-77
[68]
Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth''s interior. Earth Planet Sci Lett, 298: 1-13
[69]
Dasgupta R, Mallik A, Tsuno K, Withers A C, Hirth G, Hirschmann M M. 2013. Carbon-dioxide-rich silicate melt in the Earth''s upper mantle. Nature, 493: 211-215
[70]
Foley S F, Yaxley G M, Rosenthal A, Buhre S, Kiseeva E S, Rapp R P, Jacob D E. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos, 112S: 274-283
[71]
Gao X Y, Zheng Y F, Chen Y X. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. J Metamorphic Geol, 30: 193-212
[72]
Gao X Y, Zheng Y F, Chen Y X, Hu Z. 2013. Trace element composition of continentally subducted slab-derived melt: insight from multiphase solid inclusions in ultrahigh-pressure eclogite in the Dabie orogen. J Metamorphic Geol, 31: 453-468
[73]
Gao Y F, Hou Z Q, Kamber B S, Wei R H, Meng X J, Zhao R S. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contrib Mineral Petrol, 153: 105-120
[74]
Gerya T V, St?ckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21: 1056, doi: 10.1029/2002TC001406
[75]
Girnis A V, Bulatov V K, Lahaye Y, Brey G P. 2006. Partitioning of trace elements between carbonate-silicate melts and mantle minerals: Experiment and petrological consequences. Petrology, 14: 492-514
[76]
Litvinovsky B A, Steele I M, Wickham S M. 2000. Silicic magma formation in overthickened crust: Melting of charnockite and leucogranite at 15, 20 and 25 kbar. J Petrol, 41: 717-737
[77]
Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahihg-pressure minerals and metamorphic terranes-The view from China. J Asian Earth Sci, 35: 199-231
[78]
Liu F L, Xu Z Q, Liou J G, Song B. 2004. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. J Metamorphic Geol, 22: 315-326
[79]
Liu F L, Gerdes A, Liou J G, Xue H M, Liang F H. 2006. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, South China: Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. J Metamorphic Geol, 24: 569-589
[80]
Liu F L, Gerdes A, Zeng L S, Xue H. 2008. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China. Geochim Cosmochim Acta, 72: 2973-3000
[81]
Liu F L, Robinson P T, Gerdes A, Xue H, Liu P, Liou J G. 2010. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: constraints on the timing and nature of partial melting. Lithos, 117: 247-268
[82]
Sen C, Dunn T. 1994b. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contrib Mineral Petrol, 119: 422-432
[83]
Shatsky V S, Jagoutz E, Sobolev N V, Kozmenko O A, Parkhomenko V S, Troesch M. 1999. Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). Contrib Mineral Petrol, 137: 185-205
[84]
Shaw C S J, Dingwell D B. 2008. Experimental peridotite-melt reaction at one atmosphere: A textural and chemical study. Contrib Mineral Petrol, 155: 199-214
[85]
Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, mélange formation, and prism accretion. J Geophys Res, 91: 10229-10245
[86]
Skjerlie K P, Johnston A D. 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J Petrol, 37: 661-691
[87]
Skjerlie K P, Pati?o Douce A E. 2002. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa: Implications for melting in thickened continental crust and for subduction-zone processes. J Petrol, 43: 291-314
[88]
Song Y R, Xu H J, Zhang J F, Wang D Y, Liu E D. 2014a. Syn-exhumation partial melting and melt segregation in the Sulu UHP terrane: Evidences from leucosome and pegmatitic vein of migmatite. Lithos, 202-203: 55-75
[89]
Song Y R, Xu H J, Zhang J F, Wang D Y, Liu E D. 2014b. Effects of melt fractional crystallization on Sr-Nd and Lu-Hf isotope systems: A case study of Triassic migmatite in the Sulu UHP terrane. Int Geol Rev, 56: 783-800
[90]
Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos, 170: 208-223
[91]
Springer W, Seck H A. 1997. Partial fusion of basic granulite at 5 to 15 kbar: Implications for the origin of TTG magmas. Contrib Mineral Petrol, 127: 30-45
[92]
St?ckhert B, Duyster J, Trepmann C, Massonne H J. 2001. Microdiamond daughter crystals precipitated from supercritical COH+silicate fluids included in garnet, Erzgebirge, Germany. Geology, 29: 391-394
[93]
Sweeney R J, Prozesky V, Przybylowicz W. 1995. Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18-46 kb pressure. Geochim Cosmochim Acta, 59: 3671-3683
[94]
Tao R, Fei Y, Zhang L. 2013. Experimental determination of siderite stability at high pressure. Am Mineral, 98: 1565-1572
[95]
Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Oxford: Blackwell Science. 211
[96]
Wallis S, Tsuboi M, Suzuki K, Fanning M, Jiang L, Tanaka T. 2005. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 33: 129-132
[97]
Wang C G, Liang Y, Xu W L, Dygert N. 2013. Effect of melt composition on basalt and peridotite interaction: laboratory dissolution experiments with applications to mineral compositional variations in mantle xenoliths form the North China Craton. Contrib Mineral Petrol, 166: 1469-1488natexis of UHP quartzite during continental collision in the Sulu orogen. J Metamorphic Geol, 31: 389-413
[98]
Chen Y X, Zheng Y F, Hu Z C. 2013b. Synexhumation anatexis of ultrahigh-pressure metamorphic rocks: Petrological evidence from granitic gneiss in the Sulu orogen. Lithos, 156-159: 69-96
[99]
Chen Y X, Zheng Y F, Gao X Y, Hu Z C. 2014. Multiphase solid inclusions in zoisite-bearing eclogite: Evidence for partial melting of ultrahigh-pressure metamorphic rocks during continental collision. Lithos, 200-201: 1-21
[100]
Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1-14
[101]
Chung S L, Liu D Y, Ji J Q, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q, Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021-1024
[102]
Cloos M, Shreve R L. 1988a. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 1, Background and description. Pure Appl Geophys, 128: 455-500
[103]
Cloos M, Shreve R L. 1988b. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 2, Implications and discussion. Pure Appl Geophys, 128: 501-505
[104]
Dai L Q, Zhao Z F, Zheng Y F, Li Q L, Yang Y H, Dai M N. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett, 308: 224-244
[105]
Dai L Q, Zhao Z F, Zheng Y F, Zhang J. 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen. Chem Geol, 334: 99-121
[106]
Dai L Q, Zhao Z F, Zheng Y F. 2015. Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong''an-Dabie orogens. Gondwana Res, 27: 1236-1254
[107]
Dalton J A, Presnall D C. 1998. The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolite: Data from the system CaO-MgOAl2O3-SiO2-CO2 at 6 GPa. J Petrol, 39: 1953-1964
[108]
Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73-85
[109]
Dasgupta R, Hirschmann M M, Dellas N. 2005. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol, 149: 288-305
[110]
Dasgupta R, Hirschmann M M. 2006. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature, 440: 659-662
[111]
Dasgupta R, Hirschmann M M, Smith N D. 2007a. Partial melting experiments of peridotite+CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol, 48: 2093-2124
[112]
Dasgupta R, Hirschmann M M, Smith N D. 2007b. Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges. Geology, 35: 135-138
[113]
Dasgupta R, Hirschmann M M, McDonough W F, Spiegelman M, Withers A C. 2009. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle derived melts. Chem Geol, 262: 57-77
[114]
Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett, 298: 1-13
[115]
Dasgupta R, Mallik A, Tsuno K, Withers A C, Hirth G, Hirschmann M M. 2013. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature, 493: 211-215
[116]
Foley S F, Yaxley G M, Rosenthal A, Buhre S, Kiseeva E S, Rapp R P, Jacob D E. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos, 112S: 274-283
[117]
Gao X Y, Zheng Y F, Chen Y X. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. J Metamorphic Geol, 30: 193-212
[118]
Gao X Y, Zheng Y F, Chen Y X, Hu Z. 2013. Trace element composition of continentally subducted slab-derived melt: insight from multiphase solid inclusions in ultrahigh-pressure eclogite in the Dabie orogen. J Metamorphic Geol, 31: 453-468
[119]
Gao Y F, Hou Z Q, Kamber B S, Wei R H, Meng X J, Zhao R S. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contrib Mineral Petrol, 153: 105-120
[120]
Gerya T V, St?ckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21: 1056, doi: 10.1029/2002TC001406
[121]
Girnis A V, Bulatov V K, Lahaye Y, Brey G P. 2006. Partitioning of trace elements between carbonate-silicate melts and mantle minerals: Experiment and petrological consequences. Petrology, 14: 492-514
[122]
Girnis A V, Bulatov V K, Brey G P. 2011. Formation of primary kimberlite melts-constraints from experiments at 6-12 GPa and variable CO2/H2O. Lithos, 127: 401-413
[123]
Gordon S M, Whitney D L, Teyssier C, Fossen H. 2013. U-Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway: Significance for history of partial melting in continental subduction. Lithos 170-171: 35-53
[124]
Grassi D, Schmidt M W. 2011. The melting of carbonated pelites from 70 to 700 km depth. J Petrol, 52: 765-789
[125]
Grassi D, Schmidt M W, Günther D. 2012. Element partitioning during carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature in the EM mantle components. Earth Planet Sci Lett, 327-328: 84-96
[126]
Gudfinnsson G H, Presnall D C. 2005. Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 GPa. J Petrol, 46: 1645-1659
[127]
Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin: Springer-Verlag. 175-205
[128]
Guo S, Ye K, Chen Y, Liu J, Mao Q, Ma Y. 2012. Fluid-rock interaction and element mobilization in UHP metabasalt: Constraints from an omphacite-epidote vein and host eclogites in the Dabie orogen. Lithos, 136-139: 145-167
[129]
Hirose K. 1997. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett, 24: 2837-2840
[130]
Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol, 262: 229-245
[131]
Klemme S, van der Laan S R, Foley S F, Günther D. 1995. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper-mantle conditions. Earth Planet Sci Lett, 133: 439-448
[132]
Kogiso T, Hirose K, Takahashi E. 1998. Melting experiments on homogeneous mixtures of peridotite and basalt: Application to the genesis of ocean island basalts. Earth Planet Sci Lett, 162: 45-61
[133]
Korsakov A V, Hermann J. 2006. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett, 241: 104-118
[134]
Mallik A, Dasgupta R. 2012. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett, 329-330: 97-108
[135]
Mallik A, Dasgupta R. 2013. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas. J Petrol, 54: 2267-2300
[136]
Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1-16
[137]
Martin A M, Laporte D, Koga K T, Kawamoto T, Hammouda T. 2012. Experimental study of the stability of a dolomite+coesite assemblage in contact with peridotite: Implications for sediment-mantle interaction and diamond formation during subduction. J Petrol, 53: 391-417
[138]
Massonne H J. 2003. A comparison of the evolution of diamondiferous quartz-rich rocks from the Saxonian Erzgebirge and the Kokchetav Massif: Are so-called diamondiferous gneisses magmatic rocks? Earth Planet Sci Lett, 216: 347-364
[139]
Mo X X, Niu Y L, Dong G C, Zhao Z D, Hou Z Q, Zhou S, Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem Geol, 250: 49-67
[140]
Nicholls I A, Ringwood A E. 1973. Effect of water on olivine stability in tholeiites and production of silica-saturated magmas in the island arc environment. J Geol, 81: 285-300
[141]
Nomade S, Renne P R, Mo X X, Zhao Z D, Zhou S. 2004. Miocene volcanism in the Lhasa block, Tibet: Spatial trends and geodynamic implications. Earth Planet Sci Lett, 221: 227-243
[142]
Pati?o Douce A E, Beard J S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol, 36: 707-738
[143]
Pati?o Douce A E. 2005. Vapor-absent melting of tonalite at 15-32 kbar. J Petrol, 46: 275-290
[144]
Perchuk A L, Burchard M, Maresch W V, Schertl H P. 2005. Fluid-mediated modification of garnet interiors under ultrahigh-pressure conditions. Terra Nova, 17: 545-553
[145]
Perchuk A L, Burchard M, Maresch W V, Schertl H P. 2008. Melting of hydrous and carbonate mineral inclusions in garnet host during ultrahigh pressure experiments. Russ Geol Geophys, 103: 25-45
[146]
Perchuk A L, Shur M Yu, Yapaskurt V O, Podgornova S T. 2013. Experimental modeling of mantle metasomatism coupled with eclogitization of crustal material in a subduction zone. Petrology, 21: 579-598
[147]
Perchuk A L, Yapaskurt V O. 2013. Experimental simulation of orthopyroxene enrichment and carbonation in the suprasubduction mantle under the influence of H2O, CO2, and SiO2. Geochem Int, 51: 257-268
[148]
Qian Q, Hermann J. 2013. Partial melting of lower crust at 10-15 kbar: Constraints on adakite and TTG formation. Contrib Mineral Petrol, 165: 1195-1224
[149]
Qu X M, Hou Z Q, Li Y G. 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74: 131-148
Allègre C J. 1982. Chemical geodynamics. Tectonophysics, 81: 109-132
[162]
Auzanneau E, Vielzeuf D, Schmidt M W. 2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol, 152: 125-148
[163]
Beard J S, Lofgren G E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kbar. J Petrol, 32: 365-401
[164]
Beaumont C, Ellis S, Pfiffner A. 1999. Dynamics of sediment subduction-accretion at convergent margins: Short-term modes, long-term deformation, and tectonic implications. J Geophys Res, 104: 17573-17601
[165]
Girnis A V, Bulatov V K, Brey G P. 2011. Formation of primary kimberlite melts-constraints from experiments at 6-12 GPa and variable CO2/H2O. Lithos, 127: 401-413
[166]
Gordon S M, Whitney D L, Teyssier C, Fossen H. 2013. U-Pb dates and trace-element geochemistry of zircon from migmatite, Western Gneiss Region, Norway: Significance for history of partial melting in continental subduction. Lithos 170-171: 35-53
[167]
Grassi D, Schmidt M W. 2011. The melting of carbonated pelites from 70 to 700 km depth. J Petrol, 52: 765-789
[168]
Grassi D, Schmidt M W, Günther D. 2012. Element partitioning during carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature in the EM mantle components. Earth Planet Sci Lett, 327-328: 84-96
[169]
Gudfinnsson G H, Presnall D C. 2005. Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 GPa. J Petrol, 46: 1645-1659
[170]
Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin: Springer-Verlag. 175-205
[171]
Guo S, Ye K, Chen Y, Liu J, Mao Q, Ma Y. 2012. Fluid-rock interaction and element mobilization in UHP metabasalt: Constraints from an omphacite-epidote vein and host eclogites in the Dabie orogen. Lithos, 136-139: 145-167
[172]
Guo Z F, Wilson M, Liu J Q. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96: 205-224
[173]
Hermann J. 2002. Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol, 143: 219-235
[174]
Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92: 399-417
[175]
Hermann J, Zheng Y F, Rubatto D. 2013. Deep Fluids in Subducted Continental Crust. Elements, 9: 281-287
[176]
Hermann J, Rubatto D. 2014. Subduction of Continental Crust to Mantle Depth. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry: Geochemistry of Ultrahigh-Pressure Rocks. Amsterdam: Elsevier. 309-340
[177]
Hirose K. 1997. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett, 24: 2837-2840
[178]
Hou Z Q, Gao Y F, Qu X M, Rui Z Y, Mo X X. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett, 220: 139-155
[179]
Hwang S L, Shen P Y, Yui T F, Chu H T. 2003. Metal-sulfur-COH-silicate fluid mediated diamond nucleation in Kokchetav ultrahigh-pressure gneiss. Eur J Mineral, 15: 503-511
[180]
Irving A J, Wyllie P J. 1975. Subsolidus and melting relationships for calcite, magnesite and join CaCO3-MgCO3 to 36 kbar. Geochim Cosmochim Acta, 39: 35-53
[181]
Ivanov B A, Deutsch A. 2002. The phase diagram of CaCO3 in relation to shock compression and decomposition. Phys Earth Planet Int, 129: 131-143
[182]
Jahn B M, Wu F, Lo C H, Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem Geol, 157: 119-146
[183]
Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol, 262: 229-245
[184]
Klemme S, van der Laan S R, Foley S F, Günther D. 1995. Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper-mantle conditions. Earth Planet Sci Lett, 133: 439-448
[185]
Kogiso T, Hirose K, Takahashi E. 1998. Melting experiments on homogeneous mixtures of peridotite and basalt: Application to the genesis of ocean island basalts. Earth Planet Sci Lett, 162: 45-61
[186]
Korsakov A V, Hermann J. 2006. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett, 241: 104-118
[187]
Labrousse L, Prouteau G, Ganzhorn A C. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology, 39: 1171-1174
[188]
Lang H M, Gilotti J A. 2007. Partial melting of metapelites at ultrahigh-pressure conditions, Greenland Caledonides. Contrib Mineral Petrol, 25: 129-147
[189]
Liu F L, Robinson P T, Liu P H. 2012. Multiple partial melting events in the Sulu UHP terrane: Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. J Metamorphic Geol, 30: 887-906
[190]
Liu P L, Wu Y, Liu Q, Zhang L, Jin Z. 2014. Partial melting of UHP calc-gneiss from the Dabie Mountains. Lithos, 192-195: 86-101
[191]
Liu P L, Wu Y, Chen Y, Zhang J, Jin Z. 2015. UHP impure marbles fromthe Dabie Mountains: Metamorphic evolution and carbon cycling in continental subduction zones. Lithos, 212-215: 280-297
[192]
Liu Q, Hermann J, Zhang J F. 2013. Polyphase inclusions in the Shuanghe UHP eclogites formed by subsolidus transformation and incipient melting during exhumation of deeply subducted crust. Lithos, 177: 91-109
[193]
Liu X C, Wu Y B, Gao S, Wang H, Zheng J P, Hu Z C, Zhou L, Yang S H. 2014. Record of multiple stage channelized fluid and melt activities in deeply subducted slab from zircon U-Pb age and Hf-O isotope compositions. Geochim Cosmochim Acta, 144: 1-24
[194]
Malaspina N, Hermann J, Scambelluri M, Compagnoni R. 2006. Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth Planet Sci Lett, 249: 173-187
[195]
Malaspina N, Hermann J, Scambelluri M. 2009. Fluid/mineral interaction in UHP garnet peridotite. Lithos, 107: 38-52
[196]
Mallik A, Dasgupta R. 2012. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett, 329-330: 97-108
[197]
Mallik A, Dasgupta R. 2013. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas. J Petrol, 54: 2267-2300
[198]
Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1-16
[199]
Martin A M, Laporte D, Koga K T, Kawamoto T, Hammouda T. 2012. Experimental study of the stability of a dolomite+coesite assemblage in contact with peridotite: Implications for sediment-mantle interaction and diamond formation during subduction. J Petrol, 53: 391-417
[200]
Massonne H J. 2003. A comparison of the evolution of diamondiferous quartz-rich rocks from the Saxonian Erzgebirge and the Kokchetav Massif: Are so-called diamondiferous gneisses magmatic rocks? Earth Planet Sci Lett, 216: 347-364
[201]
Mo X X, Niu Y L, Dong G C, Zhao Z D, Hou Z Q, Zhou S, Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem Geol, 250: 49-67
[202]
Nicholls I A, Ringwood A E. 1973. Effect of water on olivine stability in tholeiites and production of silica-saturated magmas in the island arc environment. J Geol, 81: 285-300
[203]
Nomade S, Renne P R, Mo X X, Zhao Z D, Zhou S. 2004. Miocene volcanism in the Lhasa block, Tibet: Spatial trends and geodynamic implications. Earth Planet Sci Lett, 221: 227-243
[204]
Pati?o Douce A E, Beard J S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol, 36: 707-738
[205]
Pati?o Douce A E. 2005. Vapor-absent melting of tonalite at 15-32 kbar. J Petrol, 46: 275-290
[206]
Perchuk A L, Burchard M, Maresch W V, Schertl H P. 2005. Fluid-mediated modification of garnet interiors under ultrahigh-pressure conditions. Terra Nova, 17: 545-553
[207]
Perchuk A L, Burchard M, Maresch W V, Schertl H P. 2008. Melting of hydrous and carbonate mineral inclusions in garnet host during ultrahigh pressure experiments. Russ Geol Geophys, 103: 25-45
[208]
Perchuk A L, Shur M Yu, Yapaskurt V O, Podgornova S T. 2013. Experimental modeling of mantle metasomatism coupled with eclogitization of crustal material in a subduction zone. Petrology, 21: 579-598
[209]
Perchuk A L, Yapaskurt V O. 2013. Experimental simulation of orthopyroxene enrichment and carbonation in the suprasubduction mantle under the influence of H2O, CO2, and SiO2. Geochem Int, 51: 257-268
[210]
Qian Q, Hermann J. 2013. Partial melting of lower crust at 10-15 kbar: Constraints on adakite and TTG formation. Contrib Mineral Petrol, 165: 1195-1224
[211]
Qu X M, Hou Z Q, Li Y G. 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74: 131-148
[212]
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. J Petrol, 36: 891-931
[213]
Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335-356
[214]
Rapp R P, Norman M D, Laporte D, Yaxley G M, Martin H, Foley S F. 2010. Continent formation in the Archean and chemical evolution of the cratonic lithosphere: Melt-rock reaction experiments at 3-4 GPa and petrogenesis of Archean Mg-diorites (sanukitoids). J Petrol, 51: 1237-1266
[215]
Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054-1058
[216]
Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Rudnick R L, ed. Treatise in Geochemistry: The Crust. Amsterdam: Elsevier. 1-64
[217]
Russell J K, Porritt L A, Lavallée Y, Dingwell D B. 2012. Kimberlite ascent by assimilation-fuelled buoyancy. Nature, 481: 352-357
[218]
Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydration slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361-379
[219]
Sekine T, Wyllie P J. 1982a. Phase relationships in the system KAlSiO4-Mg2SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Mineral Petrol, 79: 368-374
[220]
Sekine T, Wyllie P J. 1982b. The system granite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contrib Mineral Petrol, 81: 190-202
[221]
Sekine T, Wyllie P J. 1983. Experimental simulation of mantle hybridization in subduction zones. J Geol, 91: 511-528
[222]
Sen C, Dunn T. 1994a. Dehydration melting of a basaltic composition amphibolite at 1.5 GPa and 2.0 GPa: Implication for the origin of adakites. Contrib Mineral Petrol, 117: 394-409
[223]
Guo Z F, Wilson M, Liu J Q. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96: 205-224
[224]
Hermann J. 2002. Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol, 143: 219-235
[225]
Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92: 399-417
[226]
Hermann J, Zheng Y F, Rubatto D. 2013. Deep Fluids in Subducted Continental Crust. Elements, 9: 281-287
[227]
Hermann J, Rubatto D. 2014. Subduction of Continental Crust to Mantle Depth. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry: Geochemistry of Ultrahigh-Pressure Rocks. Amsterdam: Elsevier. 309-340
[228]
Hou Z Q, Gao Y F, Qu X M, Rui Z Y, Mo X X. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett, 220: 139-155
[229]
Hwang S L, Shen P Y, Yui T F, Chu H T. 2003. Metal-sulfur-COH-silicate fluid mediated diamond nucleation in Kokchetav ultrahigh-pressure gneiss. Eur J Mineral, 15: 503-511
[230]
Irving A J, Wyllie P J. 1975. Subsolidus and melting relationships for calcite, magnesite and join CaCO3-MgCO3 to 36 kbar. Geochim Cosmochim Acta, 39: 35-53
[231]
Ivanov B A, Deutsch A. 2002. The phase diagram of CaCO3 in relation to shock compression and decomposition. Phys Earth Planet Int, 129: 131-143
[232]
Jahn B M, Wu F, Lo C H, Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem Geol, 157: 119-146
[233]
Labrousse L, Prouteau G, Ganzhorn A C. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology, 39: 1171-1174
[234]
Lang H M, Gilotti J A. 2007. Partial melting of metapelites at ultrahigh-pressure conditions, Greenland Caledonides. Contrib Mineral Petrol, 25: 129-147
[235]
Litvinovsky B A, Steele I M, Wickham S M. 2000. Silicic magma formation in overthickened crust: Melting of charnockite and leucogranite at 15, 20 and 25 kbar. J Petrol, 41: 717-737
[236]
Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahihg-pressure minerals and metamorphic terranes-The view from China. J Asian Earth Sci, 35: 199-231
[237]
Liu F L, Xu Z Q, Liou J G, Song B. 2004. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. J Metamorphic Geol, 22: 315-326
[238]
Liu F L, Gerdes A, Liou J G, Xue H M, Liang F H. 2006. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, South China: Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. J Metamorphic Geol, 24: 569-589
[239]
Liu F L, Gerdes A, Zeng L S, Xue H. 2008. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China. Geochim Cosmochim Acta, 72: 2973-3000
[240]
Liu F L, Robinson P T, Gerdes A, Xue H, Liu P, Liou J G. 2010. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: constraints on the timing and nature of partial melting. Lithos, 117: 247-268
[241]
Liu F L, Robinson P T, Liu P H. 2012. Multiple partial melting events in the Sulu UHP terrane: Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. J Metamorphic Geol, 30: 887-906
[242]
Liu P L, Wu Y, Liu Q, Zhang L, Jin Z. 2014. Partial melting of UHP calc-gneiss from the Dabie Mountains. Lithos, 192-195: 86-101
[243]
Liu P L, Wu Y, Chen Y, Zhang J, Jin Z. 2015. UHP impure marbles fromthe Dabie Mountains: Metamorphic evolution and carbon cycling in continental subduction zones. Lithos, 212-215: 280-297
[244]
Liu Q, Hermann J, Zhang J F. 2013. Polyphase inclusions in the Shuanghe UHP eclogites formed by subsolidus transformation and incipient melting during exhumation of deeply subducted crust. Lithos, 177: 91-109
[245]
Liu X C, Wu Y B, Gao S, Wang H, Zheng J P, Hu Z C, Zhou L, Yang S H. 2014. Record of multiple stage channelized fluid and melt activities in deeply subducted slab from zircon U-Pb age and Hf-O isotope compositions. Geochim Cosmochim Acta, 144: 1-24
[246]
Malaspina N, Hermann J, Scambelluri M, Compagnoni R. 2006. Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth Planet Sci Lett, 249: 173-187
[247]
Malaspina N, Hermann J, Scambelluri M. 2009. Fluid/mineral interaction in UHP garnet peridotite. Lithos, 107: 38-52
[248]
Wen D R, Liu D Y, Chung S L, Chu M F, Ji J Q, Zhang Q, Song B, Lee T Y, Yeh M W, Lo C H. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chem Geol, 252: 191-201
[249]
Wolf M B, Wyllie P J. 1994. Dehydration-melting of amphibolite at 10 kbar: The effects of temperature and time. Contrib Mineral Petrol, 115: 369-383
[250]
Wu Y B, Zheng Y F, Zhao Z F., Gong B, Liu X, Wu F Y. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochim Cosmochim Acta, 70: 3743-3761
[251]
Wyllie P J, Sekine T. 1982. The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol, 79: 375-380
[252]
Wyllie P J, Carroll M R, Johnston A D, Rutter M J, Sekine T, Van Der Laan S R. 1989. Interactions among magmas and rocks in subduction zone regions: experimental studies from slab to mantle to crust. Eur J Mineral, 1: 165-179
[253]
Xia Q X, Zheng Y F, Zhou L G. 2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chem Geol, 247: 36-65
[254]
Xie Z, Zheng Y F, Zhao Z F, Wu Y B, Wang Z R, Chen J F, Liu X M, Wu F Y. 2006. Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chem Geol, 231: 214-235
[255]
Xiong X L, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem Geol, 218: 339-359
[256]
Xu H J, Ma C Q, Ye K. 2007. Early Cretaceous granitoids and their implications for Collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry. Chem Geol, 240: 238-259
[257]
Xu H J, Ma C Q, Zhang J F. 2012a. Generation of Early Cretaceous high-Mg adakitic host and enclaves by magma mixing, Dabie orogen, Eastern China. Lithos, 142-143: 182-200
[258]
Xu H J, Ma C Q, Zhang J F, Ye K. 2012b. Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China: Petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Res, 23: 190-207
[259]
Xu H J, Ma C Q, Song Y R, Zhang J F, Ye K. 2012c. Early Cretaceous intermediate-mafic dykes in the Dabie orogen, eastern China: Petrogenesis and implications for crust-mantle interaction. Lithos, 154: 83-99
[260]
Xu H J, Ye K, Song Y, Chen Y, Zhang J F, Liu Q, Guo S. 2013. Prograde metamorphism, decompressional partial melting and subsequent melt fractional crystallization in the Weihai migmatitic gneisses, Sulu UHP terrane, eastern China. Chem Geol, 341: 16-37
[261]
Xu H J, Zhang J F, Wang Y F, Liu W L. 2015. Late Triassic alkaline complex in the Sulu UHP terrane: Implications for post-collisional magmatism and subsequent fractional crystallization. Gondwana Res, doi: 10.1016/j.gr.2015.05.017
[262]
Xu W C, Zhang H F, Guo L, Yuan H L. 2009. Miocene high Sr/Y magmatism, south Tibet: Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos, 114: 293-306
[263]
Xu W L, Zhou Q J, Pei F P, Yang D B, Gao S, Li Q L, Yang Y H. 2013. Destruction of the North China Craton: delamination or thermal/Chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths. Gondwana Res, 23: 119-129
[264]
Xu S T, Okay A I, Ji S, Sengor A M C, Su W, Liu Y, Jiang L. 1992. Diamond from the Dabie Shan meta-morphic rocks and its implication for tectonic setting. Science, 256: 80-82
[265]
Yang J H, Chung S L, Wilde S A, Wu F Y, Chu M F, Lo C H, Fan H R. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chem Geol, 214: 99-125
[266]
Yang Q L, Zhao Z F, Zheng Y F. 2012a. Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 146-147: 164-182
[267]
Yang Q L, Zhao Z F, Zheng Y F. 2012b. Slab-mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155: 442-460
[268]
Yang D B, Xu W L, Pei F P, Yang C H, Wang Q H. 2012. Spatial extent of the influence of the deeply subducted Yangtze slab on the eastern North China Craton lithosphere: Constraints from Sr-Nd-Pb isotopic compositions of Mesozoic mafic igneous rocks in western Shandong, China. Lithos, 136-139: 246-260
[269]
Yaxley G M. 2000. Experimental study of the phase and melting relations of homogeneous basalt plus peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib Mineral Petrol, 139, 326-338
[270]
Yaxley G M, Brey G P. 2004. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib Mineral Petrol, 146: 606-619
[271]
Ye K, Cong B L, Ye D N. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734-736
[272]
Zhao Z F, Zheng Y F, Wei C S, Wu F Y. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture. Lithos, 126: 99-114
[273]
Zhao Z F, Zheng Y F, Zhang J, Dai L Q, Li Q, Liu X. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol, 328: 70-88
[274]
Zheng Y F, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth Planets Space, 66: 93, doi: 10. 1186/1880-5981-66-93
[275]
Zhou L G, Xia Q X, Zheng Y F, Chen R X, Hu Z C, Yang Y H. 2015. Tectonic evolution from oceanic subduction to continental collision during the closure of Paleotethyan ocean: Geochronological and geochemical constraints from metamorphic rocks in the Hong’an orogen. Gondwana Res, 28: 348-370
[276]
Zindler A, Hart S. 1986. Chemical geodynamics. Annu Rev Earth Planet Sci, 14: 493-571
[277]
Zong K Q, Liu Y S, Hu Z C, et al. 2010. Melting-induced fluid flow during exhumation of gneisses of the Sulu ultrahigh-pressure terrane. Lithos, 120: 490-510 ?