Ahrens L H, Von Michaelis H. 1968. The composition of stony meteorites III. Some inter-element relationships. Earth Planet Sci Lett, 5: 395-400
[2]
Akaki T, Nakamura T, Noguchi T, et al. 2007. Multiple formation of chondrules in the early solar system: Chronology of a compound Al-rich chondrule. Astrophys J, 656: 29-32
[3]
Beckett J R, Grossman L. 1988. The origin of type C inclusions from carbonaceous chondrites. Earth Planet Sci Lett, 89: 1-14
[4]
Bischoff A, Keil K. 1984. Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochim Cosmochim Acta, 48: 693-709
[5]
Bischoff A, Palme H, Spettel B. 1989. Al-rich chondrules from Ybbsitz H4 chondrite: Evidence for formation by collision and splashing. Earth Planet Sci Lett, 93: 170-180
[6]
Choi B G, McKeegan K D, Krot A N, et al. 1998. Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites. Nature, 392: 577-579
[7]
Clayton R N. 1993. Oxygen isotopes in meteorites. Annu Rev Earth Planet Sci, 21: 115-149
[8]
Clayton R N, Mayeda T K, Goswami J N, et al. 1991. Oxygen isotope studies of ordinary chondrites. Geochim Cosmochim Acta, 55: 2317-2337
[9]
Grossman J N, Alexander C M O'' D, Wang J H, et al. 2002. Zoned chondrules in Semarkona: Evidence for high- and low-temperature processing. Meteorit Planet Sci, 37: 49-73
[10]
Guan Y B, Huss G R, Leshin L A, et al. 2006. Oxygen isotope and 26Al-26Mg systematics of aluminum-rich chondrules from unequilibrated enstatite chondrites. Meteorit Planet Sci, 41: 33-47
[11]
Hsu W B, Huss G R, Wasserburg G J. 2003. Al-Mg systematics of CAIs, POI, and ferromagnesian chondrules from Ningqiang. Meteorit Planet Sci, 38: 35-48
[12]
Huss G R, MacPherson G J, Wasserburg G J, et al. 2001. Aluminum-26 in calcium-aluminum-rich inclusions and chondrules from unequilibrated ordinary chondrites. Meteorit Planet Sci, 36: 975-997
[13]
Jiang Y, Hsu W B. 2009. Subdivision of petrologic type of unequilibrated ordinary chondrites from Antarctica. Chin J Polar Sci, 20: 135-150
[14]
Jones R H. 1996. FeO-rich, porphyritic pyroxene chondrules in unequilibrated ordinary chondrites. Geochim Cosmochim Acta, 60: 3115-3138
[15]
Jones R H, Scott E R D. 1989. Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite. Proc Lunar Planet Sci, 523-536
[16]
Kita N T, Nagahara H, Tachibana S, et al. 2010. High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochim Cosmochim Acta, 74: 6610-6635
[17]
Krot A N, Hutcheon I D, Keil K. 2002. Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum rich inclusions and ferromagnesian chondrules. Meteorit Planet Sci, 37: 155-182
[18]
Krot A N, Fagan T J, Keil K, et al. 2004. Ca, Al-rich inclusions, amoeboid olivine aggregates, and Al-rich chondrules from the unique carbonaceous chondrite Acfer 094: I. Mineralogy and petrology. Geochim Cosmochim Acta, 68: 2167-2184
[19]
Krot A N, Libourel G, Chaussidon M. 2006a. Oxygen isotope compositions of chondrules in CR chondrites. Geochim Cosmochim Acta, 70: 767-779
[20]
Krot A N, Petaev M I, Keil K. 2006b. Mineralogy and petrology of Al-rich objects and amoeboid olivine aggregates in the CH carbonaceous chondrite Northwest Africa 739. Chemie der Erde, 66: 57-76
[21]
Krot A N, Yurimoto H, McKeegan K D, et al. 2006c. Oxygen isotopic compositions of chondrules: Implications for evolution of oxygen isotopic reservoirs in the inner solar nebula. Chemie der Erde, 66: 249-276
[22]
Krot A N, McKeegan K D, Huss G R, et al. 2006d. Aluminum-magnesium and oxygen isotope study of relict Ca-Al-rich inclusions in chondrules. Astrophys J, 639: 1227-1237
[23]
Lauretta D S, Nagahara H, Alexander C M O'' D. 2006. Petrology and origin of ferromagnesian silicate chondrules. In: Lauretta D S, McSween Jr H Y, eds. Meteorites and the Early Solar System II. Tucson: University of Arizona Press. 431-462
[24]
Ma C, Beckett J R, Connolly Jr H C, et al. 2008. Aluminous spinels in ferromagnesian chondrules from Allende. Lunar Planet Sci, XXXIX: Abstract#2030
[25]
MacPherson G J, Huss G R. 2005. Petrogenesis of Al-rich chondrules: Evidence from bulk compositions and phase equilibria. Geochim Cosmochim Acta, 69: 3099-3127
[26]
Nagahara H, Kita N T, Ozawa K, et al. 2008. Condensation of major elements during chondrule formation and its implication to the origin of chondrules. Geochim Cosmochim Acta, 72: 1442-1465
[27]
Reddy K P R, Cooper A R. 1981. Oxygen diffusion in magnesium aluminate spinel. J Am Ceram Soc, 64: 368-371
[28]
Rout S S, Keil K, Bischoff A. 2010. Bulk chemical compositions of Al-rich objects from Rumuruti (R) chondrites: Implications for their origin. Chemie der Erde, 70: 35-53
[29]
Rudraswami N G, Ushikubo T, Nakashima D, et al. 2011. Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies. Geochim Cosmochim Acta, 75: 7596-7611
[30]
Russell S S, MacPherson G J, Leshin L A, et al. 2000. 16O enrichments in aluminum-rich chondrules from ordinary chondrites. Earth Planet Sci Lett, 184: 57-74
[31]
Russell S S, Krot A N, Huss G R, et al. 2005. The genetic relationship between refractory inclusions and chondrules. In: Krot A N, Scott E R D, Reipurth B, eds. Chondrites and the Protoplanetary Disk. San Francisco: Astronomical Society of the Pacific Conference, 341: 317-353
[32]
Russell S S, Srinivasan G, Huss G R, et al. 1996. Evidence for widespread 26Al in the solar nebula and constraints for nebula time scales. Science, 273: 757-762
[33]
Ruzicka A, Floss C, Hutson M. 2008. Relict olivine grains, chondrule recycling, and implications for the chemical, thermal, and mechanical processing of nebular materials. Geochim Cosmochim Acta, 72: 5530-5557
[34]
Schrader D L, Connolly Jr H C, Lauretta D S, et al. 2013. The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine. Geochim Cosmochim Acta, 101: 302-327
[35]
Sheng Y J, Hutcheon I D, Wasserburg G J. 1991. Origin of plagioclase-olivine inclusions in carbonaceous chondrites. Geochim Cosmochim Acta, 55: 581-599
[36]
Srinivasan G, Huss G R, Wasserburg G J. 2000. A petrographic, chemical and isotopic study of calcium-aluminum-rich inclusions and aluminum-rich chondrules from the Axtell (CV3) chondrite. Meteor Planet Sci, 35: 1333-1354
[37]
Tenner T J, Ushikubo T, Kurahashi E, et al. 2013. Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs. Geochim Cosmochim Acta, 102: 226-245
[38]
Tronche E J, Hewins R H, MacPherson G J. 2007. Formation conditions of aluminum-rich chondrules. Geochim Cosmochim Acta, 71: 3361-3381
[39]
Tsuchiyama A, Osada Y, Nakano T, et al. 2004. Experimental reproduction of classic barred olivine chondrules: Open-system behavior of chondrule formation. Geochim Cosmochim Acta, 68: 653-672
[40]
Wang Y, Hsu W B. 2009. Petrology and mineralogy of the Ningqiang carbonaceous chondrite. Meteorit Planet Sci, 44: 763-780
[41]
Young E D, Russell S S. 1998. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science, 282: 452-455
[42]
Yu Y, Hewins R H, Clayton R N, et al. 1995. Experimental study of high temperature oxygen isotope exchange during chondrule formation. Geochim Cosmochim Acta, 59: 2095-2104
[43]
Zhang A C, Hsu W B. 2009. Refractory inclusions and aluminum-rich chondrules in Sayh Al Uhaymir 290 CH chondrite: Petrography and mineralogy. Meteorit Planet Sci, 44: 787-804
[44]
Zhang A C, Itoh S, Sakamoto N, et al. 2014. Origins of Al-rich chondrules: Clues from a compound Al-rich chondrule in the Dar al Gani 978 carbonaceous chondrite. Geochim Cosmochim Acta, 130: 78-92