全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

普通球粒陨石中富铝球粒的成因:离子探针氧同位素证据

DOI: 10.1007/s11430-015-5105-7, PP. 1324-1334

Keywords: 氧同位素,离子探针,富铝球粒,普通球粒陨石,南极陨石

Full-Text   Cite this paper   Add to My Lib

Abstract:

?富铝球粒(ARC)在岩矿学和同位素组成等方面兼具富钙富铝难熔包体(CAI)和镁铁质球粒的特征,可以揭示其成因及时空关系因而成为天体化学重要的研究对象之一.本文研究了3个普通球粒陨石(GRV022410(H4),GRV052722(H3.7)和Julesburg(L3.6))中发现的7个富铝球粒.详细的岩相学和矿物学研究表明,这些富铝球粒的全岩Al2O3含量为17%~33%,均显示火成结构,主要由橄榄石、高钙和低钙辉石、长石、尖晶石和玻璃组成.离子探针原位分析显示,富铝球粒组成相的氧同位素成分(δ18O=-6.1‰~7.1‰;δ17O=-4.5‰~5.1‰)与镁铁质球粒相近,远比CAI(δ18O=-40‰;δ17O=-40‰)亏损16O.在三氧同位素图上,大部分富铝球粒投在地球分异(TF)线附近,少部分(含尖晶石)投在TF线和碳质球粒陨石无水矿物(CCAM)线之间.长石、霞石及玻璃的氧同位素成分是母体变质过程中氧同位素交换的结果.尖晶石、橄榄石及辉石的氧同位素成分代表了原始的富铝球粒的氧同位素组成,这些数据拟合线的斜率为0.7±0.1.与前人研究结果相比,更缓的斜率及更贫16O的成分进一步表明普通球粒陨石中的富铝球粒不是CAI与镁铁质球粒简单混合形成的.相反,他们很有可能在多次熔融过程中与贫16O的星云气体储库经历了更高程度的氧同位素交换.

References

[1]  Ahrens L H, Von Michaelis H. 1968. The composition of stony meteorites III. Some inter-element relationships. Earth Planet Sci Lett, 5: 395-400
[2]  Akaki T, Nakamura T, Noguchi T, et al. 2007. Multiple formation of chondrules in the early solar system: Chronology of a compound Al-rich chondrule. Astrophys J, 656: 29-32
[3]  Beckett J R, Grossman L. 1988. The origin of type C inclusions from carbonaceous chondrites. Earth Planet Sci Lett, 89: 1-14
[4]  Bischoff A, Keil K. 1984. Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochim Cosmochim Acta, 48: 693-709
[5]  Bischoff A, Palme H, Spettel B. 1989. Al-rich chondrules from Ybbsitz H4 chondrite: Evidence for formation by collision and splashing. Earth Planet Sci Lett, 93: 170-180
[6]  Choi B G, McKeegan K D, Krot A N, et al. 1998. Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites. Nature, 392: 577-579
[7]  Clayton R N. 1993. Oxygen isotopes in meteorites. Annu Rev Earth Planet Sci, 21: 115-149
[8]  Clayton R N, Mayeda T K, Goswami J N, et al. 1991. Oxygen isotope studies of ordinary chondrites. Geochim Cosmochim Acta, 55: 2317-2337
[9]  Grossman J N, Alexander C M O'' D, Wang J H, et al. 2002. Zoned chondrules in Semarkona: Evidence for high- and low-temperature processing. Meteorit Planet Sci, 37: 49-73
[10]  Guan Y B, Huss G R, Leshin L A, et al. 2006. Oxygen isotope and 26Al-26Mg systematics of aluminum-rich chondrules from unequilibrated enstatite chondrites. Meteorit Planet Sci, 41: 33-47
[11]  Hsu W B, Huss G R, Wasserburg G J. 2003. Al-Mg systematics of CAIs, POI, and ferromagnesian chondrules from Ningqiang. Meteorit Planet Sci, 38: 35-48
[12]  Huss G R, MacPherson G J, Wasserburg G J, et al. 2001. Aluminum-26 in calcium-aluminum-rich inclusions and chondrules from unequilibrated ordinary chondrites. Meteorit Planet Sci, 36: 975-997
[13]  Jiang Y, Hsu W B. 2009. Subdivision of petrologic type of unequilibrated ordinary chondrites from Antarctica. Chin J Polar Sci, 20: 135-150
[14]  Jones R H. 1996. FeO-rich, porphyritic pyroxene chondrules in unequilibrated ordinary chondrites. Geochim Cosmochim Acta, 60: 3115-3138
[15]  Jones R H, Scott E R D. 1989. Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite. Proc Lunar Planet Sci, 523-536
[16]  Kita N T, Nagahara H, Tachibana S, et al. 2010. High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochim Cosmochim Acta, 74: 6610-6635
[17]  Krot A N, Hutcheon I D, Keil K. 2002. Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum rich inclusions and ferromagnesian chondrules. Meteorit Planet Sci, 37: 155-182
[18]  Krot A N, Fagan T J, Keil K, et al. 2004. Ca, Al-rich inclusions, amoeboid olivine aggregates, and Al-rich chondrules from the unique carbonaceous chondrite Acfer 094: I. Mineralogy and petrology. Geochim Cosmochim Acta, 68: 2167-2184
[19]  Krot A N, Libourel G, Chaussidon M. 2006a. Oxygen isotope compositions of chondrules in CR chondrites. Geochim Cosmochim Acta, 70: 767-779
[20]  Krot A N, Petaev M I, Keil K. 2006b. Mineralogy and petrology of Al-rich objects and amoeboid olivine aggregates in the CH carbonaceous chondrite Northwest Africa 739. Chemie der Erde, 66: 57-76
[21]  Krot A N, Yurimoto H, McKeegan K D, et al. 2006c. Oxygen isotopic compositions of chondrules: Implications for evolution of oxygen isotopic reservoirs in the inner solar nebula. Chemie der Erde, 66: 249-276
[22]  Krot A N, McKeegan K D, Huss G R, et al. 2006d. Aluminum-magnesium and oxygen isotope study of relict Ca-Al-rich inclusions in chondrules. Astrophys J, 639: 1227-1237
[23]  Lauretta D S, Nagahara H, Alexander C M O'' D. 2006. Petrology and origin of ferromagnesian silicate chondrules. In: Lauretta D S, McSween Jr H Y, eds. Meteorites and the Early Solar System II. Tucson: University of Arizona Press. 431-462
[24]  Ma C, Beckett J R, Connolly Jr H C, et al. 2008. Aluminous spinels in ferromagnesian chondrules from Allende. Lunar Planet Sci, XXXIX: Abstract#2030
[25]  MacPherson G J, Huss G R. 2005. Petrogenesis of Al-rich chondrules: Evidence from bulk compositions and phase equilibria. Geochim Cosmochim Acta, 69: 3099-3127
[26]  Nagahara H, Kita N T, Ozawa K, et al. 2008. Condensation of major elements during chondrule formation and its implication to the origin of chondrules. Geochim Cosmochim Acta, 72: 1442-1465
[27]  Reddy K P R, Cooper A R. 1981. Oxygen diffusion in magnesium aluminate spinel. J Am Ceram Soc, 64: 368-371
[28]  Rout S S, Keil K, Bischoff A. 2010. Bulk chemical compositions of Al-rich objects from Rumuruti (R) chondrites: Implications for their origin. Chemie der Erde, 70: 35-53
[29]  Rudraswami N G, Ushikubo T, Nakashima D, et al. 2011. Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies. Geochim Cosmochim Acta, 75: 7596-7611
[30]  Russell S S, MacPherson G J, Leshin L A, et al. 2000. 16O enrichments in aluminum-rich chondrules from ordinary chondrites. Earth Planet Sci Lett, 184: 57-74
[31]  Russell S S, Krot A N, Huss G R, et al. 2005. The genetic relationship between refractory inclusions and chondrules. In: Krot A N, Scott E R D, Reipurth B, eds. Chondrites and the Protoplanetary Disk. San Francisco: Astronomical Society of the Pacific Conference, 341: 317-353
[32]  Russell S S, Srinivasan G, Huss G R, et al. 1996. Evidence for widespread 26Al in the solar nebula and constraints for nebula time scales. Science, 273: 757-762
[33]  Ruzicka A, Floss C, Hutson M. 2008. Relict olivine grains, chondrule recycling, and implications for the chemical, thermal, and mechanical processing of nebular materials. Geochim Cosmochim Acta, 72: 5530-5557
[34]  Schrader D L, Connolly Jr H C, Lauretta D S, et al. 2013. The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine. Geochim Cosmochim Acta, 101: 302-327
[35]  Sheng Y J, Hutcheon I D, Wasserburg G J. 1991. Origin of plagioclase-olivine inclusions in carbonaceous chondrites. Geochim Cosmochim Acta, 55: 581-599
[36]  Srinivasan G, Huss G R, Wasserburg G J. 2000. A petrographic, chemical and isotopic study of calcium-aluminum-rich inclusions and aluminum-rich chondrules from the Axtell (CV3) chondrite. Meteor Planet Sci, 35: 1333-1354
[37]  Tenner T J, Ushikubo T, Kurahashi E, et al. 2013. Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs. Geochim Cosmochim Acta, 102: 226-245
[38]  Tronche E J, Hewins R H, MacPherson G J. 2007. Formation conditions of aluminum-rich chondrules. Geochim Cosmochim Acta, 71: 3361-3381
[39]  Tsuchiyama A, Osada Y, Nakano T, et al. 2004. Experimental reproduction of classic barred olivine chondrules: Open-system behavior of chondrule formation. Geochim Cosmochim Acta, 68: 653-672
[40]  Wang Y, Hsu W B. 2009. Petrology and mineralogy of the Ningqiang carbonaceous chondrite. Meteorit Planet Sci, 44: 763-780
[41]  Young E D, Russell S S. 1998. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science, 282: 452-455
[42]  Yu Y, Hewins R H, Clayton R N, et al. 1995. Experimental study of high temperature oxygen isotope exchange during chondrule formation. Geochim Cosmochim Acta, 59: 2095-2104
[43]  Zhang A C, Hsu W B. 2009. Refractory inclusions and aluminum-rich chondrules in Sayh Al Uhaymir 290 CH chondrite: Petrography and mineralogy. Meteorit Planet Sci, 44: 787-804
[44]  Zhang A C, Itoh S, Sakamoto N, et al. 2014. Origins of Al-rich chondrules: Clues from a compound Al-rich chondrule in the Dar al Gani 978 carbonaceous chondrite. Geochim Cosmochim Acta, 130: 78-92

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133