Abraitis P K, Pattrick R A D, Vaughan D J. 2004. Variations in the compositional, textural and electrical properties of natural pyrite: A review. Int J Miner Process, 74: 41-59
[11]
Amann-Hildenbrand A, Ghanizadeh A, Krooss B M. 2012. Transport properties of unconventional gas systems. Mar Pet Geol, 31: 90-99
[12]
Banfield J F, Bischoff B L, Anderson M A. 1993. TiO2 accessory minerals-coarsening, and transformation kinetics in pure and doped synthetic nanocrystalline materials. Chem Geol, 110: 211-231
[13]
Banfield J F, Zhang H Z. 2001. Nanoparticles in the environment. Rev Mineral Geochem, 44: 1-58
[14]
Bazylinski D A, Heywood B R, Mann S, et al. 1993. Fe3O4 and Fe3S4 in a bacterium. Nature, 366: 218
[15]
Bazylinski D A, Frankel R B. 2004. Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2: 217-230
[16]
Bea F, Montero P. 2013. Diffusion-induced disturbances of the U-Pb isotope system in pre-magmatic zircon and their influence on SIMS dating—A numerical study. Chem Geol, 349-350: 1-17
[17]
Beermann T, Brockamp O. 2005. Structure analysis of montmorillonite crystallites by convergent-beam electron diffraction. Clay Min, 40: 1-13
[18]
Benzerara K, Menguy N, Guyot F, et al. 2005a. TEM study of a silicate-carbonate-microbe interface prepared by focused ion beam milling. Geochim Cosmochim Acta, 69: 1413-1422
[19]
Benzerara K, Yoon T H, Menguy N, et al. 2005b. Nanoscale environments associated with bioweathering of a Mg-Fe-pyroxene. Proc Natl Acad Sci USA, 102: 979-982
[20]
Benzerara K, Menguy N, Banerjee N R, et al. 2007. Alteration of submarine basaltic glass from the Ontong Java Plateau: A STXM and TEM study. Earth Planet Sci Lett, 260: 187-200
[21]
Benzerara K, Menguy N. 2009. Looking for traces of life in minerals. C R Palevol, 8: 617-628
[22]
Benzerara K, Menguy N, Obst M, et al. 2011. Study of the crystallographic architecture of corals at the nanoscale by scanning transmission X-ray microscopy and transmission electron microscopy. Ultramicroscopy, 111: 1268-1275
[23]
Benzerara K, Skouri-Panet F, Li J H, et al. 2014. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci USA, doi: 10.1073/pnas.1403510111
[24]
Bernard S, Benzerara K, Beyssac O, et al. 2007. Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks. Earth Planet Sci Lett, 262: 257-272
[25]
Bernard S, Benzerara K, Beyssac O, et al. 2010. Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks. Geochim Cosmochim Acta, 74: 5054-5068
[26]
Bernard S, Horsfield B, Schulz H M, et al. 2012. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the posidonia shale (lower toarcian, northern germany). Mar Pet Geol, 31: 70-89
[27]
Blakemore R P. 1975. Magnetotactic bacteria. Science, 190: 377-379
[28]
Braun A, Huggins F E, Shah N, et al. 2005. Advantages of soft X-ray absorption over TEM-EELS for solid carbon studies—A comparative study on diesel soot with EELS and NEXAFS. Carbon, 43: 117-124
[29]
Braun A, Kubatova A, Wirick S, et al. 2009. Radiation damage from EELS and NEXAFS in diesel soot and diesel soot extracts. J Electron Spectrosc, 170: 42-48
[30]
Brydson R, Brown A, Benning L G, et al. 2014. Analytical transmission electron microscopy. In: Henderson G S, Neuville D R, Downs R T, eds. Spectroscopic methods in mineralology and materials sciences. Rev Mineral Geochem 78: 219-269.
[31]
Burns J A. 2010. The four hundred years of planetary science since Galileo and Kepler. Nature, 466: 575-584
[32]
Buseck P R, Dunin-Borkowski R E, Devouard B, et al. 2001. Magnetite morphology and life on mars. Prco Natl Acad Sci USA, 98: 13490-13495
[33]
Chan C S, Fakra S C, Emerson D, et al. 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: Implications for biosignature formation. Isme J, 5: 717-727
[34]
Cherniak D J, Watson E B. 2003. Diffusion in zircon. Rev Mineral Geochem, 53: 113-143
[35]
Chizmadia L J, Brearley A J. 2008. Mineralogy, aqueous alteration, and primitive textural characteristics of fine-grained rims in the Y-791198 CM2 carbonaceous chondrite: TEM observations and comparison to ALHA81002. Geochim Cosmochim Acta, 72: 602-625
[36]
Chizmadia L J, Xu Y, Schwappach C, et al. 2008. Characterization of micron-sized Fe, Ni metal grains in fine-grained rims in the Y-791198 CM2 carbonaceous chondrite: Implications for asteroidal and preaccretionary models for aqueous alteration. Meteorit Planet Sci, 43: 1419-1438
[37]
Clarkson C R, Solano N, Bustin R M, et al. 2013. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 103: 606-616
[38]
Daulton T L, Eisenhour D D, Bernatowicz T J, et al. 1996. Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim Cosmochim Acta, 60: 4853-4872
[39]
Deditius A P, Utsunomiya S, Ewing R C, et al. 2009. Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite. Am Mineral, 94: 391-394
[40]
Deditius A P, Utsunomiya S, Reich M, et al. 2011. Trace metal nanoparticles in pyrite. Ore Geol Rev, 42: 32-46
[41]
Dippon U, Pantke C, Porsch K, et al. 2012. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1. Environ Sci Technol, 46: 6556-6565
[42]
Dobrzhinetskaya L F, Wirth R, Green H. 2014. Diamonds in earth''s oldest zircons from Jack Hills Conglomerate, Australia, are contamination. Earth Planet Sci Lett, 387: 212-218
[43]
Dobrzhinetskaya L F, Green H W, Weschler M, et al. 2003. Focused ion beam technique and transmission electron microscope studies of microdiamonds from the Saxonian Erzgebirge, Germany. Earth Planet Sci Lett, 210: 399-410
[44]
Dong H L, Lu A H. 2012. Mineral-microbe interactions and implications for remediation. Elements, 8: 95-100
[45]
Dong H L, Kostka J E, Kim J. 2003. Microscopic evidence for microbial dissolution of smectite. Clay Clay Miner, 51: 502-512
[46]
Dunin-Borkowski R E, McCartney M R, Frankel R B, et al. 1998. Magnetic microstructure of magnetotactic bacteria by electron holography. Science, 282: 1868-1870
[47]
Egerton R F, Li P, Malac M. 2004. Radiation damage in the TEM and SEM. Micron, 35: 399-409
[48]
Egerton R F. 2009. Electron energy-loss spectroscopy in the EEM. Rep Prog Phys, 72: 25
[49]
Eiler J, Stolper E M, McCanta M C. 2011. Intra- and intercrystalline oxygen isotope variations in minerals from basalts and peridotites. J Petrol, 52: 1393-1413
[50]
Floss C, Le Guillou C, Brearley A. 2014. Coordinated NanoSIMS and FIB-TEM analyses of organic matter and associated matrix materials in CR3 chondrites. Geochim Cosmochim Acta, 139: 1-25
[51]
Fortin D, Langley S. 2005. Formation and occurrence of biogenic iron-rich minerals. Earth-Sci Rev, 72: 1-19
[52]
Fredrich J T, Menendez B, Wong T F. 1995. Imaging the pore structure of geomaterials. Science, 268: 276-279
[53]
Garvie L A J, Buseck P R. 1998. Ratios of ferrous to ferric iron from nanometre-sized areas in minerals. Nature, 396: 667-670
[54]
Garvie L A J, Buseck P R. 1999. Bonding in silicates: Investigation of the Si L2,3 edge by parallel electron energy-loss spectroscopy. Am Mineral, 84: 946-964
[55]
Garvie L A J, Buseck P R. 2004. Nanosized carbon-rich grains in carbonaceous chondrite meteorites. Earth Planet Sci Lett, 224: 431-439
[56]
Garvie L A J, Burt D M, Buseck P R. 2008. Nanometer-scale complexity, growth, and diagenesis in desert varnish. Geology, 36: 215-218
[57]
Giannuzzi L A, Stevie F A. 1999. A review of focused ion beam milling techniques for TEM specimen preparation. Micron, 30: 197-204
[58]
Glaeser R M, Taylor K A. 1978. Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: A review. J Microsc, 112: 127-138
[59]
Golden D C, Ming D W, Zolensky M E, et al. 2002. Morphology of magnetite formed via thermal decomposition of siderite: Implications for inorganic formation of magnetite in martian meteorite ALH84001. Meteorit Planet Sci, 37: A53-A53
[60]
Golden D C, Ming D W, Morris R V, et al. 2004. Evidence for exclusively inorganic formation of magnetite in martian meteorite ALH84001. Am Mineral, 89: 681-695
[61]
Hochella M F. 2002b. There''s plenty of room at the bottom: Nanoscience in geochemistry. Geochim Cosmochim Acta, 66: 735-743
[62]
Hochella M F, Kasama T, Putnis A, et al. 2005a. Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork river superfund complex. Am Mineral, 90: 718-724
[63]
Hochella M F, Moore J N, Putnis C V, et al. 2005b. Direct observation of heavy metal-mineral association from the Clark Fork river superfund complex: Implications for metal transport and bioavailability. Geochim Cosmochim Acta, 69: 1651-1663
[64]
Hochella M F. 2008. Nanogeoscience: From origins to cutting-edge applications. Elements, 4: 373-379
[65]
Hochella M F, Jr., Lower S K, Maurice P A, et al. 2008. Nanominerals, mineral nanoparticles, and earth systems. Science, 319: 1631-1635
[66]
Hofmann A E, Valley J W, Watson E B, et al. 2009. Sub-micron scale distributions of trace elements in zircon. Contrib Mineral Petrol, 158: 317-335
[67]
Hofstra A H, Cline J S. 2000. Characteristics and models for Carlin-type Au deposits. Rev Econ Geol, 13: 163-220
[68]
Isambert A, Menguy N, Larquet E, et al. 2007. Transmission electron microscopy study of magnetites in a freshwater population of magnetotactic bacteria. Am Mineral, 92: 621-630
[69]
Jimenez-Lopez C, Romanek C S, Bazylinski D A. 2010. Magnetite as a prokaryotic biomarker: A review. J Geophys Res-Solid Earth, 115(G00G03), doi: 10.1029/2009jg001152
[70]
Jogler C, Wanner G, Kolinko S, et al. 2011. Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira Phylum. Proc Natl Acad Sci USA, 108: 1134-1139
[71]
Kappler A, Pasquero C, Konhauser K O, et al. 2005a. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 33: 865-868
[72]
Kappler A, Schink B, Newman D K. 2005b. Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1. Geobiology, 3: 235-245
[73]
Kappler A, Straub K L. 2005. Geomicrobiological cycling of iron. Mol Geomicrobiol, 59: 85-108
[74]
Keller L M, Schuetz P, Erni R, et al. 2013. Characterization of multi-scale microstructural features in opalinus clay. Microporous Mesoporous Mat, 170: 83-94
[75]
Kim J, Dong H L. 2011. Application of electron energy-loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFTEM) to the study of mineral transformation associated with microbial Fe-reduction of magnetite. Clay Clay Miner, 59: 176-188
[76]
Kirk E C, Williams D A, Ahmed H. 1989. Cross-sectional transmission electron microscopy of precisely selected regions from semiconductor devices. Inst Phys Conf Ser, 100: 501
[77]
Koehler I, Konhauser K, Kappler A. 2010. Role of microorganisms in banded iron formations. In: Barton L L, Mandl M, Loy A, eds. Geomicrobiology: Molecular and Environmental Perspective. Dordrecht: Springer. 309-324
[78]
Kogawa M, Watson E B, Ewing R C, et al. 2012. Lead in zircon at the atomic scale. Am Mineral, 97: 1094-1102
[79]
Kogure T, Okunishi E. 2010. Cs-corrected HAADF-STEM imaging of silicate minerals. J Electron Microsc, 59: 263-271
[80]
Li Y L, Konhauser K O, Cole D R, et al. 2011. Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology, 39: 707-710
[81]
Little C T S, Glynn S E J, Mills R A. 2004. Four-hundred-and-ninety-million-year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents. Geomicrobiol J, 21: 415-429
[82]
Liu C, Shi B, Zhou J, et al. 2011. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials. Appl Clay Sci, 54: 97-106
[83]
Loomer D B, Al T A, Weaver L, et al. 2007. Manganese valence imaging in mn minerals at the nanoscale using STEM-EELS. Am Mineral, 92: 72-79
[84]
Ma C, Goreva J S, Rossman G. 2002. Fibrous nanoinclusions in massive rose quartz: HRETEM and AEM investigations. Am Mineral, 87: 269-276
[85]
MacLaren I, Ramasse Q M. 2014. A berration-corrected scanning transmission electron microscopy for atomic-resolution studies of functional oxides. Int Mater Rev, 59: 115-131
[86]
McKeegan K D, Davis A M. 2007. Early solar system chronology. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry, Pergamon. Oxford: Oxford Press. 1-38
[87]
McLoughlin N, Wacey D, Kruber C, et al. 2011. A combined TEM and NanoSIMS study of endolithic microfossils in altered seafloor basalt. Chem Geol, 289: 154-162
[88]
Meldrum F C, Mann S, Heywood B R, et al. 1993a. Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proc R Soc B-Biol Sci, 251: 231-236
[89]
Meldrum F C, Mann S, Heywood B R, et al. 1993b. Electron microscopy study of magnetosomes in two cultured vibrioid magnetotactic bacteria. Proc R Soc B-Biol Sci, 251: 237-242
[90]
Buseck P R, Adachi K. 2008. Nanoparticles in the atmosphere. Elements, 4: 389-394
[91]
Calmels L, Rusz J. 2010. Momentum-resolved EELS and EMCD spectra from the atomic multiplet theory: Application to magnetite. Ultramicroscopy, 110: 1042-1045
[92]
Cave L, Al T, Loomer D, et al. 2006. A STEM/EELS method for mapping iron valence ratios in oxide minerals. Micron, 37: 301-309
[93]
Chalmers G R, Bustin R M, Power I M. 2012. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull, 96: 1099-1119
[94]
Cong B, Zhai M, Carswell D A, et al. 1995. Petrogenesis of ultrahigh-pressure rocks and their country rocks at Shuanghe in Dabieshan, central china. Eur J Mineral, 7: 119-138
[95]
Cosmidis J, Benzerara K, Gheerbrant E, et al. 2013a. Nanometer-scale characterization of exceptionally preserved bacterial fossils in paleocene phosphorites from Ouled Abdoun (Morocco). Geobiology, 11: 139-153
[96]
Cosmidis J, Benzerara K, Menguy N, et al. 2013b. Microscopy evidence of bacterial microfossils in phosphorite crusts of the peruvian shelf: Implications for phosphogenesis mechanisms. Chem Geol, 359: 10-22
[97]
Cosmidis J, Benzerara K. 2014. Soft X-ray scanning transmission micro-spectroscopy. In: Gower L, Dimasi E, eds. Handbook of Biomineralization. London: Taylor and Francis
[98]
Cowley J M. 2004. Applications of electron nanodiffraction. Micron, 35: 345-360
[99]
Craig H. 1968. Zircon lead loss: A kinetic model. Science, 159: 447
Dai Z R, Bradley J P, Joswiak D J, et al. 2002. Possible in situ formation of meteoritic nanodiamonds in the early solar system. Nature, 418: 157-159
[102]
Emerson D, Fleming E J, McBeth J M. 2010. Iron-oxidizing bacteria: An environmental and genomic perspective. Annu Rev Microbiol, 64: 561-583
[103]
Feenstra A, Rhede D, Koch-Müller M, et al. 2009. Hydrogen zoning in zinc-bearing staurolite from a high-P, low-T diasporite (Samos, Greece): A combined EMP-SIMS-FIB-FTIR study. Am Mineral, 94: 737-745
[104]
Feinberg J M, Harrison R J, Kasama T, et al. 2006. Effects of internal mineral structures on the magnetic remanence of silicate-hosted titanomagnetite inclusions: An electron holography study. J Geophys Res-Solid Earth, 111: doi: 1029/2006JB004498
[105]
Ferris J P. 2005. Mineral catalysis and prebiotic synthesis: Montmorillonite-catalyzed formation of RNA. Elements, 1: 145-149
[106]
Grogger W, Varela M, Ristau R, et al. 2005. Energy-filtering transmission electron microscopy on the nanometer length scale. J Electron Spectrosc, 143: 139-147
[107]
Hallberg R, Ferris F G. 2004. Biomineralization by Gallionella. Geomicrobiol J, 21: 325-330
[108]
Harrison R J, Dunin-Borkowski R E, Putnis A. 2002. Direct imaging of nanoscale magnetic interactions in minerals. Proc Natl Acad Sci U S A, 99: 16556-16561
[109]
Harrison R J, Hochella M F, Murphy K, et al. 2013. One hundred mineralogical questions impacting the future of the earth, planetary and environmental sciences. Elements, 9: 168-170
[110]
Hassellov M, von der Kammer F. 2008. Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements, 4: 401-406
[111]
Hazen R M, Papineau D, Leeker W B, et al. 2008. Mineral evolution. Am Mineral, 93: 1693-1720
[112]
Heaney P J, Vicenzi E P, Giannuzzi L A, et al. 2001. Focused ion beam milling: A method of site-specific sample extraction for microanalysis of earth and planetary materials. Am Mineral, 86: 1094-1099
[113]
Heck P R, Stadermann F J, Isheim D, et al. 2014. Atom-probe analyses of nanodiamonds from Allende. Meteorit Planet Sci, 49: 453-467
[114]
Hochella M F. 2002a. Nanoscience and technology the next revolution in the earth sciences. Earth Planet Sci Lett, 203: 593-605
[115]
Jacob D, Cordier P, Morniroli J P, et al. 2009. Application of precession electron diffraction to the characterization of (021) twinning in pseudo-hexagonal coesite. Am Mineral, 94: 684-692
[116]
Ji W Q, Wu F Y, Chung S L, et al. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the gangdese batholith, southern Tibet. Chem Geol, 262: 229-245
[117]
Jiang N, Spence J C H. 2012. On the dose-rate threshold of beam damage in TEM. Ultramicroscopy, 113: 77-82
[118]
Komeili A, Vali H, Beveridge T J, et al. 2004. Magnetosome vesicles are present before magnetite formation, and mama is required for their activation. Proc Natl Acad Sci USA, 101: 3839-3844
[119]
Komeili A, Li Z, Newman D K, et al. 2006. Magnetosomes are cell membrane invaginations organized by the actin-like protein mamk. Science, 311: 242-245
[120]
Konhauser K. 2006. Introduction to Geomicrobiology. Hoboken: Wiley-Blackwell
[121]
Konhauser K O. 1998. Diversity of bacterial iron mineralization. Earth-Sci Rev, 43: 91-121
[122]
Konhauser K O, Hamade T, Raiswell R, et al. 2002. Could bacteria have formed the precambrian banded iron formations? Geology, 30: 1079-1082
[123]
Kopp R E, Kirschvink J L. 2008. The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth-Sci Rev, 86: 42-61
[124]
Kotula P G, Keenan M R, Michael J R. 2006. Tomographic spectral imaging with multivariate statistical analysis: Comprehensive 3D microanalysis. Microsc Microanal, 12: 36-48
[125]
Kübel C, Voigt A, Schoenmakers R, et al. 2005. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc Microanal, 11: 378-400
[126]
Larese-Casanova P, Haderlein S B, Kappler A. 2010. Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of Ph, bicarbonate, phosphate, and humic acids. Geochim Cosmochim Acta, 74: 3721-3734
[127]
Large R R, Danyushevsky L, Hollit C, et al. 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ Geol, 104: 635-668
[128]
Lee J K W, Williams I S, Ellis D J. 1997. Pb, U and Th diffusion in natural zircon. Nature, 390: 159-162
[129]
Lee M R, Bland P A, Graham G. 2003. Preparation of tem samples by focused ion beam (FIB) techniques: Applications to the study of clays and phyllosilicates in meteorites. Mineral Mag, 67: 581-592
[130]
Lee M R. 2010. Transmission electron microscopy (TEM) of earth and planetary materials: A review. Mineral Mag, 74: 1-27
[131]
Lefèvre C T, Menguy N, Abreu F, et al. 2011a. A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science, 334: 1720-1723
[132]
Lefèvre C T, Pósfai M, Abreu F, et al. 2011b. Morphological features of elongated-anisotropic magnetosome crystals in magnetotactic bacteria of the Nitrospirae Phylum and the Deltaproteobacteria class. Earth Planet Sci Lett, 312: 194-200
[133]
Lewis R S, Ming T, Wacker J F, et al. 1987. Interstellar diamonds in meteorites. Nature, 326: 160-162
[134]
Li J H, Pan Y X, Chen G J, et al. 2009. Magnetite magnetosome and fragmental chain formation of Magnetospirillum magneticum AMB-1: Transmission electron microscopy and magnetic observations. Geophys J Int, 177: 33-42
[135]
Li J H, Pan Y X, Liu Q S, et al. 2010a. A comparative study of magnetic properties between whole cells and isolated magnetosomes of Magnetospirillum magneticum AMB-1. Chin Sci Bull, 55: 38-44
[136]
Li J H, Pan Y X, Liu Q S, et al. 2010b. Biomineralization, crystallography and magnetic properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria. Earth Planet Sci Lett, 293: 368-376
[137]
Li J H, Benzerara K, Bernard S, et al. 2013a. The link between biomineralization and fossilization of bacteria: Insights from field and experimental studies. Chem Geol, 359: 49-69
[138]
Li J H, Ge K P, Pan Y X, et al. 2013b. A strong angular dependence of magnetic properties of magnetosome chains: Implications for rock magnetism and paleomagnetism. Geochem Geophys Geosys, 14: 3887-3907
[139]
Li J H, Bernard S, Benzerara K, et al. 2014. Impact of biomineralization on the preservation of microorganisms during fossilization: An experimental perspective. Earth Planet Sci Lett, 400: 113-122
[140]
Li J H, Menguy N, Gatel C, et al. 2014. Crystal growth of bullet-shaped magnetite in magnetotactic bacteria of the Nitrospirae Phylum. J R S Interface, 12, doi: 10.1098/rsif.2014.1288
[141]
Li Q L, Li X H, Liu Y, et al. 2010. Precise U-Pb and Th-Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry. Chem Geol, 269: 396-405
[142]
Li X H, Liu Y, Li Q L, et al. 2009. Precise determination of phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem Geophys Geosys, 10(Q04010), doi: 10.1029/2009gc002400
[143]
Li X H, Li Z X, Ge W C, et al. 2003. Neoproterozoic granitoids in south china: Crustal melting above a mantle plume at ca. 825 Ma? Precambrian Res, 122: 45-83
[144]
Li Y L, Konhauser K O, Kappler A, et al. 2013. Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations. Earth Planet Sci Lett, 361: 229-237
[145]
Lin W, Li J H, Pan Y X. 2012. Newly isolated but uncultivated magnetotactic bacterium of the Phylum Nitrospirae from Beijing, China. Appl Environ Microbiol, 78: 668-675
[146]
Liou J G, Zhang R Y, Jahn B M. 1997. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie mountains, east-central China. Lithos, 41: 59-78
[147]
Maex K, Baklanov M R, Shamiryan D, et al. 2003. Low dielectric constant materials for microelectronics. J Appl Phys, 93: 8793-8841
[148]
Mann S, Frankel R B, Blakemore R P. 1984. Structure, morphology and crystal growth of bacterial magnetite. Nature, 310: 405-407
[149]
Mann S, Sparks N H C, Blakemore R P. 1987. Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria. Proc R Soc B-Biol Sci, 231: 477-487
[150]
Mayer J, Giannuzzi L A, Kamino T, et al. 2007. TEM sample preparation and FIB-induced damage. MRS Bull, 32: 400-407
[151]
McKay D S, Gibson E K, Thomas Keprta K L, et al. 1996. Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science, 273: 924-930