Addy S K. 1979. Rare earth element patterns in manganese nodules and micronodules from northwest Atlantic. Geochim Cosmochim Acta, 43: 1105-1115
[8]
Alibo D S, Nozaki Y. 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta, 63: 363-372
[9]
Banner J L, Hanson G N, Meyers W J. 1988. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian): Implications for REE mobility during carbonate diagenesis. J Sediment Res, 58: 415-432
[10]
Berkner L V, Marshall L. 1965. On the origin and rise of oxygen concentration in the Earth''s atmosphere. J Atmos Sci, 22: 225-261
[11]
Bowring S A, Grotzinger J P, Condon D J, et al. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am J Sci, 307: 1097-1145
[12]
Burdett J W, Arthur M A, Richardson M. 1989. A Neogene seawater sulfur isotope age curve from calcareous pelagic microfossils. Earth Planet Sci Lett, 94: 189-198
[13]
Byrne R, Sholkovitz E R. 1996. Marine chemistry and geochemistry of the lanthanides. In: Gschneidner K A, Eyring L, eds. Handbook on the Physics and Chemistry of Rare Earth. Amsterdam: Elsevier. 497-593
[14]
Cai Y, Hua H, Xiao S, et al. 2010. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerst?tte from southern Shaanxi, South China: Importance of event deposits. Palaios, 25: 487-506
[15]
Calvert S E, Pedersen T F. 1993. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Mar Geol, 113: 67-88
[16]
Chen Z, Zhou C, Xiao S, et al. 2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Sci Rep, 4: 4180
[17]
Chu X L, Zhang Q R, Zhang T G, et al. 2003. Sulfur and carbon isotopic variations in Neoproterozoic sedimentary rocks from southern China. Prog Nat Sci, 13: 875-880
[18]
Cloud P E. 1968. Atmospheric and Hydrospheric Evolution on the Primitive Earth Both secular accretion and biological and geochemical processes have affected earth''s volatile envelope. Science, 160: 729-736
[19]
Condon D, Zhu M, Bowring S, et al. 2005. U-Pb ages from the neoproterozoic Doushantuo Formation, China. Science, 308: 95-98
[20]
Derry L A, Brasier M D, Corfield R M, et al. 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion''. Earth Planet Sci Lett, 128: 671-681
[21]
Dulski P. 1994. Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry. Fresen J Anal Chem, 350: 194-203
[22]
Fike D, Grotzinger J, Pratt L, et al. 2006. Oxidation of the Ediacaran ocean. Nature, 444: 744-747
[23]
Filipek L H, Owen R M. 1981. Diagenetic controls of phosphorus in outer continental-shelf sediments from the Gulf of Mexico. Chem Geol, 33: 181-204
[24]
Gellatly A M, Lyons T W. 2005. Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution. Geochim Cosmochim Acta, 69: 3813-3829
[25]
German C R, Holliday B P, Elderfield H. 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochim Cosmochim Acta, 55: 3553-3558
[26]
Gill B C, Lyons T W, Frank T D. 2008. Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy. Geochim Cosmochim Acta, 72: 4699-4711
[27]
Guo Q, Shields G A, Liu C, et al. 2007. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: implications for organosedimentary metal enrichment and silicification in the early Cambrian. Paleogeogr Paleoclimatol Paleoecol, 254: 194-216
[28]
Hild E, Brumsack H J. 1998. Major and minor element geochemistry of Lower Aptian sediments from the NW German Basin (core Hohenegglesen KB 40). Cretaceous Res, 19: 615-633
[29]
Hua H, Chen Z, Yuan X, et al. 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33: 277-280
[30]
Huang J, Chu X, Jiang G, et al. 2011. Hydrothermal origin of elevated iron, manganese and redox-sensitive trace elements in the c. 635 Ma Doushantuo cap carbonate. J Geol Soc London, 168: 805-816
[31]
Huang J, Chu X, Lyons T W, et al. 2013. The sulfur isotope signatures of Marinoan deglaciation captured in Neoproterozoic shallow-to-deep cap carbonate from South China. Precambrian Res, 238: 42-51
[32]
Hurtgen M T, Arthur M A, Suits N S, et al. 2002. The sulfur isotopic composition of Neoproterozoic seawater sulfate: Implications for a snowball Earth? Earth Planet Sci Lett, 203: 413-429
[33]
Jiang G, Kaufman A J, Christie-Blick N, et al. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth Planet Sci Lett, 261: 303-320
[34]
Kah L C, Lyons T W, Frank T D. 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 431: 834-838
[35]
Kampschulte A, Strauss H. 2004. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol, 204: 255-286
[36]
Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res, 73: 27-49
[37]
Knoll A H. 2003. Biomineralization and evolutionary history. Rev Mineral Geochem, 54: 329-356
[38]
Krom M D, Berner R A. 1981. The diagenesis of phosphorus in a nearshore marine sediment. Geochim Cosmochim Acta, 45: 207-216
[39]
Lambert I, Walter M, Wenlong Z, et al. 1987. Palaeoenvironment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature, 325: 140-142
[40]
Lawrence M G, Greig A, Collerson K D, et al. 2006. Rare earth element and yttrium variability in South East Queensland waterways. Aquat Geochem, 12: 39-72
[41]
Li C, Love G D, Lyons T W, et al. 2010. A stratified redox model for the Ediacaran ocean. Science, 328: 80-83
[42]
Li D, Ling H F, Shields-Zhou G A, et al. 2013. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China. Precambrian Res, 225: 128-147
[43]
Ling H F, Chen X, Li D, et al. 2013. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Res, 225: 110-127
[44]
Marshall J F. 1983. Geochemistry of iron-rich sediments on the outer continental shelf off northern New South Wales. Mar Geol, 51: 163-175
[45]
McFadden K A, Huang J, Chu X, et al. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci, 105: 3197-3202
[46]
McLennan S. 1989. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev Mineral Geochem, 21: 169-200
[47]
Morford J L, Emerson S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochim Cosmochim Acta, 63: 1735-1750
[48]
Nagender Nath B, Balaram V, Sudhakar M, et al. 1992. Rare earth element geochemistry of ferromanganese deposits from the Indian Ocean. Mar Chem, 38: 185-208
[49]
Newton R, Pevitt E, Wignall P, et al. 2004. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth Planet Sci Lett, 218: 331-345
[50]
Nothdurft L D, Webb G E, Kamber B S. 2004. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochim Cosmochim Acta, 68: 263-283
[51]
Nursall J. 1959. Oxygen as a prerequisite to the origin of the Metazoa. Nature, 183: 1170-1172
[52]
Peng Y, Bao H, Pratt L, et al. 2014. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: Evidence from triple oxygen isotopes. Geology, 42: 815-818
[53]
Sarkar A, Sarangi S, Ebihara M, et al. 2003. Carbonate geochemistry across the Eocene/Oligocene boundary of Kutch, western India: Implications to oceanic O2-poor condition and foraminiferal extinction. Chem Geol, 201: 281-293
[54]
Schr?der S, Grotzinger J. 2007. Evidence for anoxia at the Ediacaran-Cambrian boundary: The record of redox-sensitive trace elements and rare earth elements in Oman. J Geol Soc London, 164: 175-187
[55]
Shen Y, Zhang T, Chu X. 2005. C-isotopic stratification in a Neoproterozoic postglacial ocean. Precambrian Res, 137: 243-251
[56]
Shen Y. 2002. C-isotope variations and paleoceanographic changes during the late Neoproterozoic on the Yangtze Platform, China. Precambrian Res, 113: 121-133
[57]
Shen Y, Schidlowski M. 2000. New C isotope stratigraphy from southwest China: Implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations. Geology, 28: 623-626
[58]
Shen Y, Zhao R, Chu X, et al. 1998. The carbon and sulfur isotope signatures in the Precambrian-Cambrian transition series of the Yangtze Platform. Precambrian Res, 89: 77-86
[59]
Shields G, Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chem Geol, 175: 29-48
[60]
Takahashi Y, Shimizu H, Usui A, et al. 2000. Direct observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray-absorption near-edge structure (XANES). Geochim Cosmochim Acta, 64: 2929-2935
[61]
Tessier A, Campbell P G, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem, 51: 844-851
[62]
Tribovillard N, Algeo T J, Lyons T, et al. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem Geol, 232: 12-32
[63]
Wang W, Zhou C, Yuan X, et al. 2012. A pronounced negative δ13C excursion in an Ediacaran succession of western Yangtze Platform: A possible equivalent to the Shuram event and its implication for chemostratigraphic correlation in South China. Gondwana Res, 22: 1091-1101
[64]
Webb G E, Kamber B S. 2000. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochim Cosmochim Acta, 64: 1557-1565
[65]
Webb G E, Nothdurft L D, Kamber B S, et al. 2009. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite. Sedimentology, 56: 1433-1463
[66]
Wotte T, Shields-Zhou G A, Strauss H. 2012. Carbonate-associated sulfate: Experimental comparisons of common extraction methods and recommendations toward a standard analytical protocol. Chem Geol, 326: 132-144
[67]
Xiao S, Zhang Y, Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391: 553-558
[68]
Yang J, Sun W, Wang Z, et al. 1999. Variations in Sr and C isotopes and Ce anomalies in successions from China: Evidence for the oxygenation of Neoproterozoic seawater? Precambrian Res, 93: 215-233
[69]
Yin J, He T, Li S, et al. 1993. Geological evolution and mineralization from the surrounding areas of Sichuan Basin and its vicinal regions during the Sinian Subera. Chengdu: Press of Chengdu University of Science and Technology. 1-198
[70]
Yin L, Zhu M, Knoll A H, et al. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446: 661-663
[71]
Yuan X, Chen Z, Xiao S, et al. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470: 390-393
[72]
Zhang P, Hua H, Liu W. 2014. Isotopic and REE evidence for the paleoenvironmental evolution of the late Ediacaran Dengying Section, Ningqiang of Shaanxi Province, China. Precambrian Res, 242: 96-111
[73]
Zhang T, Chu X, Zhang Q, et al. 2003. Variations of sulfur and carbon isotopes in seawater during the Doushantuo stage in late Neoproterozoic. Chin Sci Bull, 48: 1375-1380
[74]
Zhou C, Xiao S. 2007. Ediacaran δ13C chemostratigraphy of South China. Chem Geol, 237: 89-108
[75]
Zhou C, Jiang S, Xiao Si, et al. 2012. Rare earth elements and carbon isotope geochemistry of the Doushantuo Formation in South China: Implication for middle Ediacaran shallow marine redox conditions. Chin Sci Bull, 57: 1998-2006
[76]
Zhu M, Li G, Zhang J, et al. 2001. Early Cambrian stratigraphy of east Yunnan, southwestern China: A synthesis. Acta Palaeontol Sin, 40: 4-39
[77]
Zhu M, Lu M, Zhang J, et al. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Res, 225: 7-28
[78]
Zhu M, Zhang J. 2005. Ediacaran-Cambrian boundary sections and Early Cambrian Chengjiang nonmineralized fossils in eastern Yunnan Province southwestern China: Introduction. In: Peng S, Babcock L E, Zhu M, eds. Cambrian System of China and Korea. Hefei: University of Science and Technology of China Press. 1-12
[79]
Zhu M, Zhang J, Yang A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Paleogeogr Paleoclimatol Paleoecol, 254: 7-61
[80]
Zhu M, Zhang J, Yang A, et al. 2003. Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform: An integrated approach. Prog Nat Sci, 13: 951-960