Allegre C J. 1982. Chemical geodynamics. Tectonophysics, 81: 109-132
[10]
Allegre C J, Turcotte D L. 1986. Implications of a two-component marble-cake mantle. Nature, 323: 123-127
[11]
Anderson D L. 2006. Speculations on the nature and cause of mantle heterogeneity. Tectonophys, 416: 7-22
[12]
Anderson D L. 2007. The eclogite engine: Chemical geodynamics as a Galileo thermometer. In: Foulger G R, Jurdy D M, eds. Plates, Plumes and Planetary Processes. Boulder, Colorado, USA: Geological Society of America Special Papers, 430: 47-64
[13]
Armstrong R L. 1968. A model for Sr and Pb isotope evolution in a dynamic Earth. Rev Geophys, 6: 175-199
[14]
Armstrong R L. 1981. Radiogenic isotopes-the case for crustal recycling on a near steady-state no-continental-growth earth. Philos Trans R Soc, A301: 443-472
[15]
Beaumont C, Ellis S, Pfiffner A. 1999. Dynamics of sediment subduction-accretion at convergent margins: Short-term modes, long-term deformation, and tectonic implications. J Geophys Res, B104: 17573-17601
[16]
Beaumont C, Jamieson R A, Butler J P, Warren C J. 2009. Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett, 287: 116-129
[17]
Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth Planet Sci Lett, 260: 373-393
[18]
Bebout G E. 2014. Chemical and isotopic cycling in subduction zones. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd. Amsterdam: Elsevier, 4: 703-747
[19]
Beltrando M, Rubatto D, Manatschal G. 2010. From passive margins to orogens: The link between ocean-continent transition zones and (ultra)high-pressure metamorphism. Geology, 38: 559-562
[20]
Cai Y C, Fan H R, Santosh M, Liu X, Hu F F, Yang K F, Lan T G, Yang Y H, Liu Y. 2013. Evolution of the lithospheric mantle beneath the southeastern North China Craton: Constraints from mafic dikes in the Jiaobei terrain. Gondwana Res, 24: 601-621
[21]
Chen L, Ma C Q, Zhang J Y, Mason R, Zhang C. 2011. Mafic dykes derived from Early Cretaceous depleted mantle beneath the Dabie orogenic belt: Implications for changing lithosphere mantle beneath Eastern China. Geol J, 46: 333-343
[22]
Chen Y X, Zheng Y F, Hu Z C. 2013a. Petrological and zircon evidence for anatexis of UHP quartzite during continental collision in the Sulu orogen. J Metamorph Geol, 31: 389-413
[23]
Chen Y X, Zheng Y F, Hu, Z C. 2013b. Synexhumation anatexis of ultrahigh-pressure metamorphic rocks: Petrological evidence from granitic gneiss in the Sulu orogen. Lithos, 156-159: 69-96
[24]
Chen L, Zhao Z F, Zheng Y F. 2014. Origin of andesitic rocks: geochemical constraints from Mesozoic volcanics in the Luzong basin, South China. Lithos, 190: 220-239
[25]
Cheng H, King R L, Nakamura E, Vervoort J D, Zheng Y F, Ota T, Wu Y B, Kobayashi K, Zhou Z Y. 2009. Transitional time of oceanic to continental subduction in the Dabie orogen: Constraints from U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating. Lithos, 110: 327-342
[26]
Cheng H, DuFrane S A, Vervoort J D, Zheng Y F, Ota T, Wu Y B, Kobayashi K, Zhou Z Y. 2010a. Protracted oceanic subduction prior to continental subduction: New Lu-Hf and Sm-Nd geochronology of oceanic-type high-pressure eclogite in the western Dabie orogen. Am Mineral, 95: 1214-1223
[27]
Cheng H, DuFrane S A, Vervoort J D, Nakamura E, Li Q L, Zhou Z Y. 2010b. The Triassic age for oceanic eclogites in the Dabie orogen: Entrainment of oceanic fragments in the continental subduction. Lithos, 117: 82-98
[28]
Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequence. Contrib Mineral Petrol, 86: 107-118
[29]
Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1-14
[30]
Chung S L, Chu M F, Zhang Y, Xie Y, Lo C, Lee T, Lan C, Li X, Zhang Q, Wang Y. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci Rev, 68: 173-196
[31]
Cloos M, Shreve R L. 1988a. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure Appl Geophys, 128: 456-500
[32]
Cloos M, Shreve R L. 1988b. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion. Pure Appl Geophys, 128: 501-505
[33]
Cong B L. 1996. Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China. Beijing: Science Press. 224
[34]
Dai L Q, Zhao Z F, Zheng Y F, Li Q, Yang Y, Dai M. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett, 308: 224-244
[35]
Dai L Q, Zhao Z F, Zheng Y F, Zhang J. 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen. Chem Geol, 334: 99-121
[36]
Dai L Q, Zhao Z F, Zheng Y F. 2014. Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts. Geochem Geophys Geosyst, 15: 3762-3779
[37]
Dai L Q, Zhao Z F, Zheng Y F, Zhang J. 2015a. Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen. Geochem Geophys Geosyst, 16, doi: 10.1002/2014GC005620
[38]
Dai L Q, Zhao Z F, Zheng Y F. 2015b. Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong''an-Dabie orogens. Gondwana Res, 27: 1236-1254
[39]
Dilek Y, Altunkaynak S. 2007. Cenozoic crustal evolution and mantle dynamics of postcollisional magmatism in western Anatolia. Int Geol Rev, 49: 431-453
[40]
Ernst W G, Liou J G. 1995. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts. Geology, 23: 253-256
[41]
Eyal M, Litvinovsky B, Jahn B M, Zanvilevich A, Katzir Y. 2010. Origin and evolution of post-collisional magmatism: Coeval Neoproterozoic calc-alkaline and alkaline suites of the Sinai Peninsula. Chem Geol, 269: 153-179
[42]
Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion. Geophys J R Astr Soc, 43: 163-200
[43]
Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Puchtel I, Liu X, Huang H, Wang X R. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism. Earth Planet Sci Lett, 270: 41-53
[44]
Gerya T V, St?ckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21: 1056, doi:10.1029/2002TC001406
[45]
Gill J B. 1981. Orogenic Andesites and Plate Tectonics. New York: Springer-Verlag Berlin. 390
[46]
Gregory R T, Taylor H P Jr. 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for 18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res, B86: 2737-2755
[47]
Griffin W L, O''Reilly S Y, Afonso J C, Begg G C. 2009. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J Petrol, 50: 1185-1204
[48]
Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin-Heidelberg: Springer-Verlag. 175-205
[49]
Guo F, Guo J, Wang C Y, Fan W M, Li C W, Zhao L, Li H X, Li J Y. 2013a. Formation of mafic magmas through lower crustal AFC processes-an example from the Jinan gabbroic intrusion in the North China Block. Lithos, 179: 157-174
[50]
Guo J T, Guo F, Wang C Y, Li C W. 2013b. Crustal recycling processes in generating the early Cretaceous Fangcheng basalts, North China Craton, New constraints from mineral chemistry, oxygen isotopes of olivine and whole-rock geochemistry. Lithos, 170-171: 1-16
[51]
Guo F, Fan W, Li C, Wang C Y, Li H, Zhao L, Li J. 2014. Hf-Nd-O isotopic evidence for melting of recycled sediments beneath the Sulu Orogen, North China. Chem Geol, 381: 243-258
[52]
Hart S R, Blusztajn J, Dick H J B, Meyer P S, Muehlenbachs K. 1999. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim Cosmochim Acta, 63: 4059-4080
[53]
Hawkesworth C J, Hergt J M, Ellam R M, McDermott F. 1991. Element fluxes associated with subduction related magmatism. Philos Trans R Soc, A335: 393-405
[54]
Hermann J, Zheng Y F, Rubatto D. 2013. Deep Fluids in Subducted Continental Crust. Elements, 9: 281-287
[55]
Huang F, Li S G, Dong F, Li Q L, Chen F, Wang Y, Yang W. 2007. Recycling of deeply subducted continental crust in the Dabie Mountains, central China. Lithos, 96: 151-169
[56]
Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 90: 297-314
[57]
Hoffmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219-229
[58]
Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci, 8: 523-548
[59]
Jahn B M, Wu F Y, Lo C H, Tsai C H. 1999. Crustal-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem Geol, 157: 119-146
[60]
Lawton T F, McMillan N J. 1999. Arc abandonment as a cause for passive continental rifting: Comparison of the Jurassic Mexican Borderland rift and the Cenozoic Rio Grande rift. Geology, 27: 779-782
[61]
Le Pichon X, Francheteau J, Bonnin J. 1973. Plate Tectonics. Amsterdam, New York, London: Elsevier. 300
[62]
Li S G, Jagoutz E, Lo C H, Chen Y Z, Li Q L. 1999. Sm/Nd, Rb/Sr, and 40Ar/39Ar isotopic systematics of the ultrahigh-pressure metamorphic rocks in the Dabie-Sulu belt, Central China: A retrospective view. Int Geol Rev, 41: 1114-1124
[63]
Liou J G, Zhang R Y, Ernst W G. 1997. Lack of fluid during ultrahigh-P metamorphism in the Dabie-Sulu region, Eastern China. Proc Inter Geol Congress, 30, 17: 141-155
[64]
Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahigh-pressure minerals and metamorphic terranes—The view from China. J Asian Earth Sci, 35: 199-231
[65]
Liu F L, Liou J G. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. J Asian Earth Sci, 40: 1-39
[66]
Ma L, Jiang S Y, Hofmann A W, Dai B Z, Hou M L, Zhao K D, Chen L H, Li J W, Jiang Y H. 2014. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton? Geochim Cosmochim Acta, 124: 250-271
[67]
Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nature Geosci, 5: 862-867
[68]
McCulloch M T, Gamble J A. 1991. Geochemical and geodynamical constraints on subduction. Earth Planet Sci Lett, 102: 358-374
[69]
McDonough W F, Sun S S. 1995. The composition of the Earth. Chem Geol, 120: 223-253
[70]
McKenzie D P. 1969. Speculations on the consequences and causes of plate motions. Geophys J R Astr Soc, 18: 1-32
[71]
Merle R, Marzoli A, Reisberg L, Bertrand H, Nemchin A, Chiaradia M, Callegaro S, Jourdan F, Bellieni G, Kontak D, Puffer J, McHone J G. 2014. Sr, Nd, Pb and Os isotope systematics of CAMP tholeiites from eastern North America (ENA): Evidence of a subduction-enriched mantle source. J Petrol, 55: 133-180
[72]
Middlemost E A K. 1994. Naming materials in magma/igneous rock system. Earth-Sci Rev, 37: 215-224
[73]
O''Neill H St C, Jenner F E. 2012. The global pattern of trace-element distributions in ocean floor basalts. Nature, 491: 698-704
[74]
Peacock S M. 1993. The importance of blueschist-ecologite dehydration reactions in subducting oceanic crust. Geol Soc Am Bull, 105: 684-694
[75]
Pearce J A, Stern R J. 2006. The origin of back-arc basin magmas: Trace element and isotope perspectives. In: Christie D M, Fisher C R, Lee S M, Givens S, eds. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington DC: American Geophysical Union, 166: 63-86
[76]
Rampone E, Hofmann A W. 2012. A global overview of isotopic heterogeneities in the oceanic mantle. Lithos, 148: 247-261
[77]
Ringwood A E. 1974. Petrologic evolution of island arc systems. J Geol Soc London, 130: 183-204
[78]
Ringwood A E. 1982. Phase transformations and differentiation in subducted lithosphere: Implications for mantle dynamics, basalt petrogenesis and crustal evolution. J Geol, 90: 611-643
[79]
Ringwood A E. 1990. Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem Geol, 82: 187-207
[80]
Sobolev N V, Shatsky V S. 1990. Diamond inclusions in garnets from metamorphic rocks: A new environment of diamond formation. Nature, 343: 742-746
[81]
Song S G, Niu Y L, Su L, Zhang C, Zhang L F. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth-Sci Rev, 129: 59-84
[82]
Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos, 170-171: 208-223
[83]
Stolper E, Newman S. 1994. The role of water in the petrogenesis of Mariana Trough magmas. Earth Planet Sci Lett, 121: 293-325
[84]
Stracke A. 2012. Earth''s heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chem Geol, 330-331: 274-299
[85]
Tang J, Zheng Y F, Gong B, Wu Y B, Gao T S, Yuan H L, Wu F Y. 2008. Extreme oxygen isotope signature of meteoric water in magmatic zircon from metagranite in the Sulu orogen, China: Implications for Neoproterozoic rift magmatism. Geochim Cosmochim Acta, 72: 3139-3169
[86]
Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Oxford: Blackwell Science. 211
[87]
Taylor B, Martinez F. 2003. Back-arc basin basalt systematics. Earth Planet Sci Lett, 210: 481-497
[88]
Valley J W, Kinny P D, Schulze D J, Spicuzza M J. 1998. Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contrib Mineral Petrol, 133: 1-11
[89]
Wang Y, Zhao Z F, Zheng Y F, Zhang J J. 2011. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos, 125: 940-955
[90]
Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett, 231: 53-72
[91]
Wu Y B, Hanchar J M, Gao S, Sylvester P J, Tubrett M, Qiu H N, Wijbrans J R, Brouwer F M, Yang S H, Yang Q J, Liu Y S, Yuan H L. 2009. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China. Earth Planet Sci Lett, 277: 345-354
[92]
Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong''an-Dabie-Sulu orogenic belt in central China. Gondwana Res, 23: 1402-1428
[93]
Xu S T, Okay A I, Ji S Y, Sengor A M C, Wen S, Liu Y C, Jiang L L. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256: 80-82
[94]
Xu Y G, Ma J L, Huang X L, Iizuka Y, Chung S L, Wang Y B, Wu X Y. 2004. Early Cretaceous gabbrioc complex from Yinan, Shandong Province: Petrogenesis and mantle domains beneath the North China Craton. Inter J Earth Sci, 93: 1025-1041
[95]
Xu Z, Zhao Z F, Zheng Y F. 2012a. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos, 146-147: 202-217
[96]
Xu H J, Ma C Q, Song Y R, Zhang J F, Ye K. 2012b. Early Cretaceous intermediate-mafic dykes in the Dabie orogen, eastern China: Petrogenesis and implications for crust-mantle interaction. Lithos, 154: 83-99
[97]
Xu Z, Zheng Y F, He H Y, Zhao Z F. 2014a. Phenocryst He-Ar isotopic and whole-rock geochemical constraints on the origin of crustal components in the mantle source of Cenozoic continental basalt in eastern China. J Volcano Geothermal Res, 272: 99-110
[98]
Xu Z, Zheng Y F, Zhao Z F, Gong B. 2014b. The hydrous properties of subcontinental lithospheric mantle: Constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochim Cosmochim Acta, 143: 285-302
[99]
Yang J H, Chung S L, Wilde S A, Wu F Y, Chu M F, Lo Q H, Fan H R. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chem Geol, 214: 99-125
[100]
Yang C H, Xu W L, Yang D B, Wang W, Wang W D, Liu J M. 2008. Petrogenesis of Shangyu gabbro-diorites in western Shandong: Geochronological and geochemical evidence. Sci China Ser D-Earth Sci, 51: 481-492
[101]
Yang Q L, Zhao Z F, Zheng Y F. 2012a. Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 146-147: 164-182
[102]
Yang Q L, Zhao Z F, Zheng Y F. 2012b. Slab-mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155: 442-460
[103]
Yang D B, Xu W L, Pei F P, Yang C H, Wang Q H. 2012c. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 136-139: 246-260
[104]
Ye K, Cong B L, Ye D N. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734-736
[105]
Zhang H F, Sun M, Zhou X H, Fan W M, Zhai M G, Ying J F. 2002. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 144: 241-253
[106]
Zhang Z M, Shen K, Sun W D, Liu Y S, Liou J G, Shi C, Wang J L. 2008a. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim Cosmochim Acta, 72: 3200-3228
[107]
Zhang J, Zhang H F, Ying J F, Tang Y J, Niu L F. 2008b. Contribution of subducted Pacific slab to late Cretaceous magmatism in Qingdao region, China: A petrological record. Island Arc, 17: 231-241
[108]
Zhang J J, Zheng Y F, Zhao Z F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110: 305-326
[109]
Zhang J, Zhao Z F, Zheng Y F, Liu X, Xie L. 2012. Zircon Hf-O isotope and whole-rock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos, 136-139: 225-245
[110]
Zhao Z F, Zheng Y F, Zhang J, Dai L Q, Li Q, Liu X. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol, 328: 70-88
[111]
Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd. Amsterdam: Elsevier. 3: 1-64
[112]
Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochem Geophys Geosys, 5: Q05004, doi: 10.1029/2003GC000597
[113]
Smith D C. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310: 641-644
[114]
Zhao Z F, Dai L Q, Zheng Y F. 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Scientific Reports, 3: 3413, doi: 10.1038/srep03413
[115]
Zheng Y F. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J Geol Soc, 166: 763-782
[116]
Zheng Y F, Fu B, Gong B, Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Sci Rev, 62: 105-161
[117]
Zheng Y F, Wu Y B, Chen F K, Gong B, Li L, Zhao Z F. 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim Cosmochim Acta, 68: 4145-4165
[118]
Zheng Y F. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chin Sci Bull, 53: 3081-3104
[119]
Zheng Y F, Wu F Y. 2009. Growth and reworking of cratonic lithosphere. Chin Sci Bull, 54: 3347-3353
[120]
Zheng Y F, Chen R X, Zhao Z F. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insight from studies of the Chinese Scientific Drilling (CCSD) core samples. Tectonophys, 475: 327-358
[121]
Zheng Y F, Xia Q X, Chen R X, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev, 107: 342-374
[122]
Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5-48
[123]
Zheng Y F, Xiao W J, Zhao G C. 2013. Introduction to tectonics of China. Gondwana Res, 23: 1189-1206
[124]
Zheng Y F, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth Planets Space, 66: 93, doi: 10.1186/1880-5981-66-93
[125]
Zindler A, Hart S. 1986. Chemical geodynamics. Annual Rev Earth Planet Sci, 14: 493-571
[126]
Zhou L G, Xia Q X, Zheng Y F, Chen R X, Hu Z C, Yang Y H. 2015. Tectonic evolution from oceanic subduction to continental collision during the closure of Paleotethyan ocean: Geochronological and geochemical constraints from metamorphic rocks in the Hong''an orogen. Gondwana Res, 28: 348-370