全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黄河流域硅的组成与输出

, PP. 982-993

Keywords: 溶解硅,生物硅,悬浮颗粒物,黄河,植硅体

Full-Text   Cite this paper   Add to My Lib

Abstract:

?分析了黄河水体中悬浮颗粒物(SPM)、溶解硅(DSi)、生物硅(BSi)、植硅体和其他相关参数,旨在揭示自然过程与人为活动对黄河输送硅的影响.结果表明,黄河中溶解硅浓度自1986年以来明显下降;1986~2010年,约有34%的溶解硅因土壤侵蚀的减少而滞留在黄河流域.来源于高等植物的植硅体占河流生物硅的67.2%~96.3%,并以平滑棒形为主要形态.由于含沙量大,黄河生物硅浓度普遍高于世界其他河流,在近黄河口处的利津站位,BSi/(BSi+DSi),BSi/SPM比值分别为0.5和0.003,这表明黄河悬浮颗粒物携带的生物硅是河流输送硅的一个重要组成部分.黄河中相对较高的生物硅含量反映了黄河流域浑浊度与土壤侵蚀程度较高;源自黄土高原巨大的泥沙通量可能是导致黄河中生物硅含量较高的原因,这与世界河流系统生物硅通量随产沙模数增大而增加的趋势相一致.在黄河口外的渤海沉积物中的生物硅也主要由植硅体所构成,平滑棒形同样是其主要的形态.研究表明,由河流输送的生物硅主要由来源于表层土壤侵蚀的植硅体所构成,其也是近岸水域硅生物地球化学循环的重要部分.

References

[1]  Wang H J, Yang Z S, Saito Y, et al. 2006. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Glob Planet Change, 50: 212-225
[2]  Wang H J, Yang Z S, Saito Y, et al. 2007. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): Impacts of climate change and human activities. Glob Planet Change, 57: 331-351
[3]  Yu T, Meng W, Ongley E, et al. 2010. Long-term variations and causal factors in nitrogen and phosphorus transport in the Yellow River, China. Estuar Coast Shelf Sci, 86: 345-351
[4]  Yu Z G, Mi T Z, Yao Q Z, et al. 2001. The nutrients concentration and the changes in decade-scale in the central Bohai Sea. Acta Oceanol Sin, 20: 65-75
[5]  Zhang J, Huang W W, Létolle R, et al. 1995. Major element chemistry of the Huanghe (Yellow River), China-weathering processes and chemical fluxes. J Hydrol, 168: 173-203
[6]  陈静生, 夏星辉, 洪松. 2000. 长江水质酸化与黄河水质浓化趋势及成因探讨. 中国工程科学, 3: 54-58
[7]  陈静生. 2006. 河流水质原理及中国河流水质. 北京: 科学出版社. 1-17
[8]  陈沛沛, 刘素美, 张桂玲, 等. 2013. 黄河下游营养盐浓度、入海通量月变化及“人造洪峰”的影响. 中国海洋大学学报, 35: 59-71
[9]  巩瑶. 2012. 黄河下游利津站营养盐输送规律及影响因素研究. 博士学位论文. 青岛: 中国海洋大学. 1-110
[10]  焦恩泽. 2004. 黄河水库泥沙. 郑州: 黄河水利出版社. 12
[11]  全球环境监测系统(GEMS)/water. 1990. 长江、黄河、珠江、太湖水质动态研究(1980~1989). 技术报告. 中国预防医学科学院环境卫生监测所. 42-65
[12]  王婷. 2007. 2002~2004年及调水调沙期间黄河下游营养盐的变化特征. 硕士学位论文. 青岛: 中国海洋大学. 1-62
[13]  王永吉, 吕厚远. 1993. 植物硅酸体研究及应用. 北京: 海洋出版社. 44
[14]  Anderson G F. 1986. Silica, diatoms and a freshwater productivity maximum in Atlantic coastal plain estuaries, Chesapeake Bay. Estuar Coast Shelf Sci, 22: 183-197
[15]  Billen G, Lancelot C, Meybeck M. 1991. N, P and Si retention along the aquatic continuum from land to ocean. In: Mantoura R F C, Martin J M, Wollast R, eds. Ocean Margin Processes in Global Change. Chichester: Wiley & Sons. 19-44
[16]  Blecker S W, McCulley R L, Chadwick O A, et al. 2006. Biologic cycling of silica across a grassland bioclimosequence. Glob Biogeochem Cycle, 20: GB3023
[17]  Boyle E, Collier R, Dengler A T, et al. 1974. On the chemical mass-balance in estuaries. Geochim Cosmochim Acta, 38: 1719-1728
[18]  Burton J D, Liss P S. 1973. Processes of supply and removal of dissolved silicon in the oceans. Geochim Cosmochim Acta, 37: 1761-1773
[19]  Cary L, Alexandre A, Meunier J D, et al. 2005. Contribution of phytoliths to the suspended load of biogenic silica in the Nyong basin rivers (Cameroon). Biogeochemistry, 74: 101-114
[20]  Conley D J. 1997. Riverine contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr, 42: 774-777
[21]  Conley D J. 1998. An interlaboratory comparison for the measurement of biogenic silica in sediments. Mar Chem, 63: 39-48
[22]  Conley D J. 2002. Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycle, 16: 1121
[23]  Derry L A, Kurtz A C, Ziegler K, et al. 2005. Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature, 433: 728-731
[24]  Ding T P, Gao J F, Tian S H, et al. 2011. Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River, China, with implications for the global silicon cycle. Geochim Cosmochim Acta, 75: 6672-6689
[25]  Edmond J M, Palmer M R, Measures C I, et al. 1995. The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia and Brazil. Geochim Cosmochim Acta, 59: 3301-3325
[26]  Guo L D, Zhang J Z, Gueguen C. 2004. Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River. Glob Biogeochem Cycle, 18: GB1038
[27]  Lajtha K, Jarrell W M, Johnson D W, et al. 1999. Collection of soil solution. In: Robertson G P, Coleman D C, Bledsoe C S, et al, eds. Standard Soil Methods for Long-Term Ecological Research. Oxford: Oxford University Press. 166-182
[28]  Liu S M, Li L W, Zhang G L, et al. 2012. Impacts of human activities on nutrient transports in the Huanghe (Yellow River) estuary. J Hydrol, 430-431: 103-110
[29]  Loucaides S, Cappellen P V, Behrends T. 2008. Dissolution of biogenic silica from land to ocean: Role of salinity and pH. Limnol Oceanogr, 53: 1614-1621
[30]  Lu H Y, Wu N Q, Liu K, et al. 2007. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: Palaeoenvironmental reconstruction in the Loess Plateau. Quat Sci Rev, 26: 759-772
[31]  Meunier J D, Colin F, Alarcon C. 1999. Biogenic storage of silica in soils. Geology, 27: 835-838
[32]  Michalopoulos P, Aller R C. 2004. Early diagenesis of biogenic silica in the Amazon delta: Alteration, authigenic clay formation, and storage. Geochim Cosmochim Acta, 68: 1061-1085
[33]  Milliman J D, Meade R H. 1983. World-wide delivery of river sediment to the oceans. Geology, 91: 1-21
[34]  Milliman J D. 1997. Blessed dams or damned dams? Nature, 386: 325-327
[35]  Olivié-Lauquet G, Allard T, Bertaux J, et al. 2000. Crystal chemistry of suspended matter in a tropical hydrosystem, Nyong basin (Cameroon, Africa). Chem Geol, 170: 113-131
[36]  Ran X B, Yu Z G, Chen H T, et al. 2013. Silicon transport of Changjiang River: Could the Three Gorges Reservoir be a filter? Environ Earth Sci, 70: 1-13
[37]  Sauer D, Saccone L, Conley D J, et al. 2006. Review of methodologies for extracting plant-avaiable and amorphous Si from soils and aquatic sediments. Biogeochemistry, 80: 89-108
[38]  Syvitski J P M, V?r?smarty C J, Kettner A J, et al. 2005. Impact of humans on flux of terrestrial sediment to the global coastal ocean. Science, 308: 376-380
[39]  Tipper E T, Bickle M J, Galy A, et al. 2006. The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry. Geochim Cosmochim Acta, 70: 2737-2754
[40]  Tréguer P, Nelson D M, van Bennekom A J, et al. 1995. The silica balance in the world ocean: A reestimate. Science, 268: 375-379
[41]  Wang H J, Bi N S, Saito Y, et al. 2010. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmental implications in its estuary. J Hydrol, 39: 302-313
[42]  Wang H J, Saito Y, Zhang Y, et al. 2011. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia. Earth-Sci Rev, 108: 80-100

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133