全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

各向同性介质弹性阻抗的张量表示

DOI: 10.1007/s11430-015-5079-5, PP. 799-810

Keywords: 应力张量,速度张量,弹性阻抗,反演,储层预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

?作为声波阻抗的广义形式,当前地震勘探领域所应用的弹性阻抗描述了在地震纵波非垂直入射的情况下地层对反射纵波的阻抗特征,因此能够反映地层的横波速度信息.但是,根据其理论公式的推导,传统的弹性阻抗实质是反射波的一个衍生标量属性,且存在诸如弱阻抗差、小入射角和相邻地层纵/横波速度比恒定等假设条件.因此在相应的反射系数重构、地震反演与解释过程中不可避免地存在误差.通过分析各向同性弹性介质中速度场与应力场之间的关系,给出了弹性阻抗张量的精确公式表征.弹性阻抗张量能够表示每个应力分量与速度分量间的关系,因此完备地描述了介质的弹性力学特性.文章通过理论模型和实际数据应用证明了导出的弹性阻抗张量表达式较经典的弹性阻抗公式有更高的精度和适用范围.

References

[1]  王保丽, 印兴耀, 张繁昌. 2005. 弹性阻抗反演及应用研究. 地球物理学进展, 20: 89–92
[2]  刘福平, 孟宪军, 王玉梅, 等. 2010. 反演纵横波速度的Jacobian矩阵及精确计算方法. 中国科学: 地球科学, 40: 1608–1616
[3]  印兴耀, 宗兆云, 吴国忱. 2013. 非均匀介质孔隙流体参数地震散射波反演. 中国科学: 地球科学, 43: 1934–1942
[4]  Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods. San Francisco: W H Freeman
[5]  Avseth P, Mukerji T, Mavko G. 2005. Quantitative Seismic Interpretation. Cambridge: Cambridge University Press
[6]  Connolly P. 1999. Elastic impedance. The Leading Edge, 18: 438–452
[7]  Duffaunt K, Alsos T, Landr? M, et al. 2000. Shear-wave elastic impedance. The Leading Edge, 19: 1223–1229
[8]  Gong X, Zhang F, Li X, et al. 2013. Study of S-wave ray elastic impedance for identifying lithology and fluid. J Appl Geophys, 10: 145–156
[9]  Ma J. 2003. Forward modelling and inversion methods based on generalized elastic impedance in seismic exploration. J Chin Geophys, 46: 159–168
[10]  Ma J, Morozov I B. 2007. The exact impedance for P-SV wave. In: 77th SEG Annual Meeting. Expanded Abstract. 288–292
[11]  Morozov I B. 2010. Exact elastic P/SV impedance. Geophysics, 75: C7–C13
[12]  Santos L T, Tygel M. 2004. Impedance-type approximations of the P-P elastic reflection coefficients: Modeling and AVO inversion. Geophysics, 69: 592–598
[13]  Schoenberg M, Protazio J. 1992. ‘Zoeppritz'' rationalized and generalized to anisotropy. J Seism Explor, 1: 125–144
[14]  VerWest B. 2004. Elastic impedance revisited. In: 66th EAGE Conference and Exhibition. Extended Abstracts. P342
[15]  Wang Y. 2003. Seismic Amplitude Inversion in Reflection Tomography. Amsterdam: Elsevier
[16]  Wang Y. 1999. Approximations to the Zoeppritz equations and their use in AVO analysis. Geophysics, 64: 1920–1927
[17]  Whitcombe D N. 2002. Elastic impedance normalization. Geophysics, 67: 60–62
[18]  Zhang F, Wang Y, Li X. 2012. Viabilities of seismic ray impedance and elastic impedance for hydrocarbon-sand discrimination. Geophysics, 77: M39–M52
[19]  Zhang F, Li X. 2013. Generalized approximations of reflection coefficients in orthorhombic media. J Geophys Eng, 10: 295–403
[20]  Zoeppritz K, Geiger L. 1919. Erdbebenwellen VIII B, uber reflexion and durchgang seismischer wellen duch unstetigkeitsflachen. Gottinger Nachr, 1: 66–84
[21]  Zong Z Y, Yin X Y, Wu G C. 2012. Elastic impedance variation with angle inversion for elastic parameters. J Geophys Eng, 9: 247

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133