全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大陆碰撞、高原生长和气候演化—2014年Crafoord奖获得者PeterMolnar教授成就解读

, PP. 770-779

Keywords: 大陆碰撞,高原生长,气候演化,PeterMolnar的学术成就

Full-Text   Cite this paper   Add to My Lib

Abstract:

?2014年Crafoord奖授予美国科罗拉多大学PeterMolnar教授,以表彰他“对于理解全球大地构造、特别是大陆变形和造山带的结构和演化,以及构造运动对海洋-大气环流和气候影响方面的开创性贡献”.Molnar教授及其合作者最早发现了青藏高原大型走滑断层和亚洲内部的非刚性变形,提出了印度-欧亚大陆碰撞控制亚洲新生代构造格架的新认识,并从遥感解译、地震波速变化和地震断层面解等提供了证据;他们还利用弹塑性变形的滑线场理论解释构造变形的空间分布和动力来源,揭示了岩石圈增厚和大陆逃逸共同存在的事实,为主导青藏高原30年研究的两大动力模型的提出,奠定了基础.Molnar教授认为,印度次大陆的岩石圈俯冲到亚洲地幔并对流剥离(拆沉)是喜马拉雅-青藏高原生长的动力机制;青藏高原在15~10Ma已经达到了最大高度并开始垮塌和向外生长.海峡关闭使大洋环流改变控制了非洲干旱气候等.最近,他提出由于赤道太平洋西部陆地生长,改变了下垫面条件和沃克环流以及东风带的位置及强度,形成了拉尼娜大气环流形式,进而使高纬度地区第四纪冰川发育.Molnar教授的研究工作促进了我们对新生代全球构造运动、地震发生机理和气候演化及其关系的认识;他的思想和工作方法对我们的研究有指导意义.

References

[1]  钟大赉, 丁林. 1996. 青藏高原的隆起及其机制探讨. 中国科学D辑: 地球科学, 26: 289–295
[2]  An Z S, Wu G X, Li J P, et al. 2015. Global monsoon dynamics and climate change. Annu Rev Earth Planet Sci, 43: 2.1–2.49
[3]  Molnar P. 1986b. The Structure of mountain ranges. Sci Am, 254: 70–79
[4]  Molnar P. 2004. Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates? Annu Rev Earth Planet Sci, 32: 67–89
[5]  Molnar P. 2005. Mio-Pliocene growth of the Tibetan Plateau and evolution of east Asian climate. Palaeontol Electron, 8: 2A
[6]  Molnar P, England P. 1990. Late Cenozoic uplift of mountain ranges and global climatic change: Chicken or egg? Nature, 346: 29–34
[7]  Molnar P, Houseman G A. 2013. Rayleigh-Taylor instability, lithospheric dynamics, surface topography at convergent mountain belts, and gravity anomalies. J Geophys Res, 118: 2544–2557
[8]  Molnar P, Lyon-Caen H. 1989. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophys J Int, 99: 123–153
[9]  Molnar P, Stock J M. 2009. Slowing of India''s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28: TC3001
[10]  Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of continental collision. Science, 189: 419–426
[11]  Molnar P, Tapponnier P. 1978. Active tectonics of Tibet. J Geophys Res, 83: 5361–5375
[12]  Molnar P, Boos W R, Battisti D S. 2010. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sci, 38: 77–102
[13]  Molnar P, Burchfiel B C, Zhao Z Y, et al. 1987. The geologic evolution of northern Tibet: Results from an expedition to Ulugh Muztagh. Science, 235: 299–304
[14]  Molnar P, England P, Martinod J. 1993. Mantle dynamics, the uplift of the Tibetan Plateau and the Indian monsoon. Rev Geophys, 31: 357–396
[15]  Molnar P, Houseman G A, England P C. 2006. Palaeo-altimetry of Tibet. Nature, 444: E4
[16]  Molnar P, Houseman G A, Conrad C P. 1998. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: Effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophys J Int, 133: 568–584
[17]  Molnar P, Cane M A. 2007. Early pliocene (pre-Ice Age) El Nino-like global climate: Which El Nino? Geosphere, 3: 337–365
[18]  Ou J M, Du A M, Thebaulte E, et al. 2013. A high resolution lithospheric magnetic field model over China. Sci China Earth Sci, 56: 1759–1768
[19]  Philander S G, Fedorov A V. 2003. Role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography, 18: 1045
[20]  Raymo M E, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117–122
[21]  Scharer U, Xu R H, Allegre C J. 1984. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region, Tibet. Earth Planet Sci Lett, 69: 311–320
[22]  郭正堂. 2010. 22~8 Ma风尘沉积记录的季风演变历史. 见: 丁仲礼, 等, 编著. 中国西部环境演化集成研究. 北京: 气象出版社. 1–19
[23]  李吉均, 文世宣, 张青松, 等. 1979. 青藏高原隆起的时代、幅度和形式的探讨. 中国科学, 22: 608–616
[24]  李忠海. 2014. 大陆俯冲-碰撞-折返的动力学数值模拟研究综述. 中国科学: 地球科学, 44: 817–841
[25]  贾承造, 李本亮, 雷永良, 等. 2013. 环青藏高原盆山体系构造与中国中西部天然气大气区. 中国科学: 地球科学, 43: 1621–1631
[26]  嘉世旭, 刘保金, 徐朝繁, 等. 2014. 龙门山中段及两侧地壳结构与汶川地震构造. 中国科学: 地球科学, 44: 497–509
[27]  梁美艳, 王治祥, 周森, 等. 2013. 陇西地区甘肃群的物质来源及其构造和古气候指示. 中国科学: 地球科学, 43: 2007–2015
[28]  刘启民, 赵俊猛, 卢芳, 等. 2014. 用接收函数方法反演青藏高原东北缘地壳结构. 中国科学: 地球科学, 44: 668–679
[29]  刘明哲, 魏文寿. 2006. 中亚粉尘东输可能对全球降温起关键性作用. 科学通报, 51(增刊Ⅰ): 1–6
[30]  刘志锋, 刘青松. 2013. 陕西延安两个坡度不同土壤剖面磁学性质及其在古降雨量重建中的意义. 中国科学: 地球科学, 43: 2037–2048
[31]  鹿化煜, 郭正堂. 2013. 晚新生代东亚气候变化: 进展与问题. 中国科学: 地球科学, 43: 1907–1918
[32]  鹿化煜, 胡挺, 王先彦. 2009. 1100万年以来中国北方风尘堆积与古气候变化的周期及驱动因素分析. 高校地质学报, 15: 149–158
[33]  马洁华, 王会军. 2014. 一个基于耦合气候系统模式的气候预测系统的研制. 中国科学: 地球科学, 44: 1689–1700
[34]  乔彦松, 郭正堂, 郝青振, 等. 2006. 中新世黄土-古土壤序列的粒度特征及其对成因的指示意义. 中国科学D辑: 地球科学, 36: 646–653
[35]  王国灿, 曹凯, 张克信, 等. 2011. 青藏高原新生代构造隆升阶段的时空格局. 中国科学: 地球科学, 41: 332–349
[36]  吕红华, 常远, 王玮, 等. 2013. 天山中新世早期快速剥露:磷灰石裂变径迹与(U-Th)/He低温热年代学证据. 中国科学: 地球科学, 43: 1964–1974
[37]  徐仁, 陶君容, 孙湘君. 1973. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义. 植物学报, 15: 103–119
[38]  张培震, 邓启东, 张国民, 等. 2003. 中国大陆的强震活动与活动地块. 中国科学D辑: 地球科学, 33(增刊Ⅰ): 12–20
[39]  张培震, 邓起东, 张竹琪, 等. 2013. 中国大陆的活动断裂、地震灾害及其动力过程. 中国科学: 地球科学, 43: 1607–1620
[40]  郑勇, 葛粲, 谢祖军, 等. 2013. 芦山与汶川地震震区地壳上地幔结构及深部孕震环境. 中国科学: 地球科学, 43: 1027–1037
[41]  Champagnac J D, Molnar P, Sue C, et al. 2012. Tectonics, climate, and mountain topography. J Geophys Res, 117: B02403
[42]  Chen J S, Huang B C, Sun L S. 2010. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 489: 189–209
[43]  Dayem K E, Molnar P, Battisti D S, et al. 2010. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth Planet Sci Lett, 295: 219–230
[44]  Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J Geophys Res, 112: B08416
[45]  Guo Z T, Ruddiman W F, Hao Q Z, et al. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159–163
[46]  Guo Z T, Sun B, Zhang Z S, et al. 2008. A major reorganization of Asian climate by the early Miocene. Clim Past, 4: 153–174
[47]  Laskar J, Robutel P, Joutel F, et al. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys, 428: 261–285
[48]  Lu H Y, Wang X Y, Li L P. 2010. Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. In: Clift P D, Tada R, Zheng H, eds. Monsoon Evolution and Tectonics-Climate Linkage in Asia. Geol Soc London Spec Publ, 342: 29–44
[49]  Mao L G, Xiao A C, Wu L, et al. 2014. Cenozoic tectonic and sedimentary evolution of southern Qaidam Basin, NE Tibetan Plateau and its implication for the rejuvenation of Eastern Kunlun Mountains. Sci China Earth Sci, 57: 2726–2739
[50]  Molnar P. 1986a. The geologic history and structure of the Himalaya. Am Sci, 74: 144–154
[51]  Smith A G, Hurley A M, Briden J C. 1981. Phanerozoic Paleocontinential World Maps. Cambridge: Cambridge University Press
[52]  Sun J M, Xu Q H, Liu W M, et al. 2014. Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Paleogeogr Paleoclimatol Paleoecol, 399: 21–30
[53]  Tapponnier P, Molnar P. 1976. Slip-line field theory and large-scale continental tectonics. Nature, 264: 319–324
[54]  Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibetan Plateau. Science, 294: 1671–1677
[55]  Tian J. 2013. Coherent variations of the obliquity components in global ice volume and ocean carbon reservoir over the past 5 Ma. Sci China Earth Sci, 56: 2160–2172
[56]  Wang C S, Zhao X X, Liu Z F, et al. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 105: 4987–4992
[57]  Wang X F, Li R Y, Li X Z, et al. 2014. Variations in leaf characteristics of three species of angiosperms with changing of altitude in Qilian Mountains and their inland high-altitude pattern. Sci China Earth Sci, 57: 662–670
[58]  Wu G, Liu Y M, He B, et al. 2012. Thermal controls on the Asian Summer monsoon. Sci Rep, 2: 404
[59]  Xu Z Q, Wang Q, Arnaud P, et al. 2013. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene. Tectonics, 32: 191–215
[60]  Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev, 76: 1–131
[61]  Zachos J C, Dickens G R, Zeebe R E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451: 279–283
[62]  Zhang P Z. 2013. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584, 7–22
[63]  Zhang P Z, Molnar P, Downs W R. 2001. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate changes on erosion rates. Nature, 410: 891–897
[64]  Zhang P Z, Shen Z K, Burgman R, et al. 2004. Continuous deformation of the Tibetan Plateau constrained from Global Positioning measurements. Geology, 32: 809–812
[65]  Zhang Y G, Pagani M, Liu Z H. 2014. A 12-million-year temperature history of the tropical pacific ocean. Science, 344: 84–87
[66]  Zhao L, Zhao M, Lu G. 2014. Upper mantle seismic anisotropy beneath a convergent boundary: SKS waveform modeling in central Tibet. Sci China Earth Sci, 57: 759–776

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133