全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大陆俯冲碰撞带高温超高压变质岩的多阶段折返与部分熔融

DOI: 10.1007/s11430-015-5067-9, PP. 752-769

Keywords: 大陆俯冲碰撞带,高温超高压变质岩,P-T-t轨迹,多阶段折返,部分熔融

Full-Text   Cite this paper   Add to My Lib

Abstract:

?大陆碰撞造山带根部岩石经受高温(>850℃)变质作用,特别是俯冲带超高压变质岩受到高温叠加变质,对超高压岩片折返期间的元素和同位素行为、部分熔融作用及其地球动力学效应等具有重要意义.本文简要介绍了世界上5个典型的发育高温超高压变质岩的大陆碰撞带,包括中国大别山、哈萨克斯坦Kokchetav地块、格陵兰东加里东造山带、希腊罗多彼山以及德国厄尔士山,分析了它们的高温超高压变质作用及演化特点,讨论了高温超高压岩石的变质P-T-t轨迹和多阶段折返过程以及折返期间的部分熔融作用、超高压指示性矿物的保存和退变质作用等及其可能的机制.在此基础之上,提出了大陆俯冲隧道内高温超高压变质岩的未来研究方向和重点.

References

[1]  Gilotti J A, Jones K A, Elvevold S. 2008. Caledonian metamorphic patterns in Greenland. In: Higgins A K, Gilotti J A, Smith M P, eds. The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia. Geol Soc Am Mem, 202: 201-225
[2]  Gilotti J A, McClelland W C. 2011. Geochemical and geochronological evidence that the North-East Greenland ultrahigh-pressure terrane is Laurentian crust. J Geol, 119: 439-456
[3]  Gilotti J A. 2013. The Realm of Ultrahigh-Pressure Metamorphism. Elements, 9: 255-260
[4]  Gilotti J A, McClelland W C, Wooden J L. 2014. Zircon captures exhumation of an ultrahigh-pressure terrane, North-East Greenland Caledonides. Gondwana Res, 25: 235-256
[5]  Groppo C, Rubatto D, Rolfo F, et al. 2010. Early Oligocene partial melting in the Main Central Thrust Zone (ArunValley, eastern Nepal Himalaya). Lithos, 118: 287-301
[6]  Groppo C, Rolfo F, Indares A. 2012. Partial melting in the Higher Himalayan Crystallines of Eastern Nepal: The effect of decompression and implications for the ‘channel flow'' model. J Petrol, 53: 1057-1088
[7]  Groppo C, Rolfo F, Liu Y C, et al. 2015. P-T evolution of elusive UHP eclogites from the Luotian dome (North Dabie Zone, China): How far can the thermodynamic modeling lead us? Lithos, doi: 10.1016/j.lithos.2014.11.013
[8]  Grove T L, Chatterjee N, Parman S W, et al. 2006. The influence of H2O on mantle wedge melting. Earth Plan Sci Lett, 249: 74-89
[9]  Guillot S, Hattori K, Agard P, et al. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Heidelberg: Springer-Verlag. 175-205
[10]  Hacker B R, Liou J G. 1998. When Continent Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Dordrecht: Kluw Acad Publ. 1-323
[11]  Hacker B R, Calvert A, Zhang R Y, et al. 2003. Ultrarapid exhumation of ultrahigh-pressure diamond-bearing metasedimentary rocks of the Kokchetav Massif, Kazakhstan? Lithos, 70: 61-75
[12]  He Y S, Li S G, Jochen Hoefs, et al. 2013. Sr-Nd-Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen: Constraints on the recycled lower continental crust. Lithos, 156-159: 204-217
[13]  Hemingway B S, Bohlen S R, Hankins W B, et al. 1998. Heat capacity and thermodynamic properties for coesite and jadeite: Reexamination of the quartz-coesite equilibrium boundary. Am Mineral, 83: 409-418
[14]  Hermann J, Green D H. 2001. Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett, 188: 149-168
[15]  Hermann J, Rubatto D, Korsakov A V, et al. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contrib Mineral Petrol, 141: 66-82
[16]  Holland T J B. 1980. The reaction albite=jadeite + quartz determined experimentally in the range 600–1200℃. Am Mineral, 65: 129-134
[17]  Huerta A D, Royden L H, Hodges K V. 1998. The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heating. J Geophys Res, 103: 15287-15302
[18]  Hwang S L, Shen P, Chu H T, et al. 2001. Genesis of microdiamonds from melt and associated multiphase inclusions in garnet of ultrahigh-pressure gneiss from Erzgebirge, Germany. Earth Planet Sci Lett, 188: 9-15
[19]  Kalsbeek F, Thrane K, Higgins A K, et al. 2008. Polyorogenic history of the East Greenland Caledonides. In: Higgins A K, Gilotti J A, Smith M P, eds. The Greenland Caledonides—Evolution of the Northeast Margin of Laurentia. Geol Soc Am Mem, 202: 55-72
[20]  Katayama I, Parkinson C D, Okamoto K, et al. 2000a. Supersilicic clinopyroxene and silica exsolution in UHPM eclogite and politic gneiss from the Kokchetav massif, Kazakhstan. Am Mineral, 85: 1368-1374
[21]  Katayama I, Zayachkovsky A A, Maruyama S. 2000b. Prograde pressure-temperature records from inclusions in zircons from ultrahigh-pressure- high-temperature rocks of the Kokchetav Massif, northern Kazakhstan. Island Arc, 9: 417-427
[22]  Kelsey D E, Hand M. 2015. On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geosci Front, doi: 10.1016/j.gsf.2014.09.006
[23]  Kennedy C S, Kennedy G G. 1976. The equilibrium boundary between graphite and diamond. J Geophys Res, 81: 2467-2470
[24]  Kincaid C, Silver P. 1996. The role of viscous dissipation in the orogenic process. Earth Planet Sci Lett, 142: 271-288
[25]  Kooijman E, Upadhyay D, Mezger K, et al. 2011. Response of the U-Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism: The Kadavur anorthosite complex, southern India. Chem Geol, 290: 177-188
[26]  Kostopoulos D K, Ioannidis N M, Sklavounos S A. 2000. A new occurrence of ultrahigh-pressure metamorphism, central Macedonia, Norther Greece: Evidence from graphitized diamonds? Int Geol Rev, 42: 545-554
[27]  Krohe A, Mposkos E. 2002. Multiple generations of extensional detachments in the Rhodope Mountains (northern Greece): Evidence of episodic exhumation of high-pressure rocks. In: Blundell D J, Neubauer F, Von Quadt A, eds. The Timing and Location of Major Ore Deposits in an Evolving Orogen. London Geol Soc Spec Pub, 204: 151-178
[28]  Kunz B E, Johnson T E, White R W, et al. 2014. Partial melting of metabasic rocks in Val Strona di Omegna, Ivrea Zone, northern Italy. Lithos, 190-191: 1-12
[29]  Kylander-Clark A R C, Hacker B R, Mattinson C G. 2012. Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet Sci Lett, 321-322: 115-120
[30]  Labrousse L, Jolivet L, Agard P, et al. 2002. Crustal-scale boudinage and migmatization of gneiss during their exhumation in the UHP province of western Norway. Terra Nova, 14: 263-270
[31]  Labrousse L, Prouteau G, Ganzhorn A C. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology, 39: 1171-1174
[32]  Lathe C, Koch-Müller M, Wirth R, et al. 2005. The influence of OH in coesite on the kinetics of the coesite-quartz phase transition. Am Mineral, 90: 36-43
[33]  Leloup P H, Ricard Y, Battaglia J, et al. 1999. Shear heating in continental strike-slip zones: Model and field examples. Geophys J Int, 136: 19-40
[34]  Li S G, Xiao Y, Liu D, et al. 1993. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: Timing and processes. Chem Geol, 109: 89-111
[35]  Li W Y, Teng F Z, Xiao Y L, et al. 2011. High-temperature inter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth Planet Sci Lett, 304: 224-230
[36]  Li Z X, Li X H, Kinny P D, et al. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Res, 122: 85-109
[37]  Liati A, Gebauer D. 1999. Constraining the prograde and retrograde P-T-t path of Eocene HP rocks by SHRIMP dating of different zircon domains: Inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contrib Mineral Petrol, 135: 340-354
[38]  Liati A, Gebauer D, Wysoczanski R. 2002. U-Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece): Evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism. Chem Geol, 184: 281-299
[39]  Liu F L, Robinson P T, Liu P H. 2012. Multiple partial melting events in the Sulu UHP terrane: Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. J Metamorph Geol, 30: 887-906
[40]  Liu Y C, Li S, Xu S, et al. 2005. Geochemistry and geochronology of eclogites from the northern Dabie Mountains, central China. J Asian Earth Sci, 25: 431-443
[41]  Liu Y C, Li S G, Gu X F, et al. 2007a. Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China. J Metamorph Geol, 25: 975-989
[42]  Liu Y C, Li S G, Xu S T. 2007b. Zircon SHRIMP U-Pb dating for gneiss in northern Dabie high T/P metamorphic zone, central China: Implication for decoupling within subducted continental crust. Lithos, 96: 170-185
[43]  Liu Y C, Gu X F, Li S G, et al. 2011a. Multistage metamorphic events in granulitized eclogites from the North Dabie complex zone, central China: Evidence from zircon U-Pb age, trace element and mineral inclusion. Lithos, 122: 107-121
[44]  Liu Y C, Gu X F, Rolfo F, et al. 2011b. Ultrahigh-pressure metamorphism and multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone (central China): Evidence from mineral inclusions and decompression textures. J Asian Earth Sci, 42: 607-617
[45]  Liu Y C, Deng L P, Gu X F, et al. 2015. Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain high-temperature metamorphism in eclogites from the Dabie orogen, central China. Gondwana Res, 27: 410-423
[46]  Malaspina N, Hermann J, Scambelluri M, et al. 2006. Multistage metasomatism in ultrahigh-pressure mafic rocks from the North Dabie Complex (China). Lithos, 90: 19-42
[47]  Maruyama S, Liou J G, Zhang R. 1994. Tectonic evolution of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts from central China. Island Arc, 3: 112-121
[48]  Maruyama S, Liou J G, Terabayashi M. 1996. Blueschists and eclogites of the world, and their exhumation. Int Geol Rev, 38: 485-594
[49]  Maruyama S, Parkinson C D. 2000. Overview of the geology, petrology and tectonic framework of the high-pressure-ultrahigh-pressure metamorphic belt of the Kokchetav Massif, Kazakhstan. Island Arc, 9: 439-455
[50]  Massonne H J. 2001. First find of coesite in the ultrahighpressure metamorphic region of the Central Erzgebirge, Germany. Eur J Mineral, 13: 565-570
[51]  Massonne H J. 2003. A comparison of the evolution of diamondiferous quartz-rich rocks from the Saxonian Erzgebirge and the Kokchetav Massif: Are so-called diamondiferous gneisses magmatic rocks? Earth Planet Sci Lett, 216: 347-364
[52]  Massonne H J, O''Brien P J. 2003. The Bohemian Massif and the NW Himalaya. In: Carswell D A, Compagnoni R, eds. Ultrahigh Pressure Metamorphism. EMU Notes Mineral, 5: 145-187
[53]  Massonne H J, Czambor A. 2007. Geochemical signatures of Variscan eclogites from the Saxonian Erzgebirge, central Europe. Chem der Erde Geochem, 67: 69-83
[54]  Massonne H J. 2013. Constructing the pressure-temperature path of ultrahigh-pressure rocks. Elements, 9: 267-272
[55]  McClelland W C, Power S E, Gilotti J A, et al. 2006. U-Pb SHRIMP geochronology and trace element geochemistry of coesite-bearing zircons, North-East Greenland Caledonides. In: Hacker B R, McClelland W C, Liou J G, eds. Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Geol Soc Am Spec Pap, 403: 23-43
[56]  Miller J A, Buick I S, Cartwright I, et al. 2002. Fluid processes during the exhumation of high-P metamorphic belts. Mineral Mag, 66: 93-119
[57]  Mosenfelder J L, Bohlen S R. 1997. Kinetics of the coesite to quartz transformation. Earth Planet Sci Lett, 153: 133-147
[58]  Mosenfelder J L, Schertl H P, Smyth J R, et al. 2005. Factors in the preservation of coesite: The importance of fluid infiltration. Am Mineral, 90: 779-789
[59]  Mposkos E D. 2002. Petrology of the ultra-high pressure metamorphic Kimi complex in Rhodope (N.E. Greece): A new insight into the Alpine geodynamic evolution of the Rhodope. Bull Geol Soc Greece, 34: 2169-2188
[60]  Mposkos E D, Baziotis I, Palikari S et al. 2004. Alpine UHP metamorphism in the Kimi complex of the Rhodope HP province N.E. Greece: Mineralogical and textural indicators. In: Proceedings of the 32rd International Geological Congress. Florence. 18-28: 108
[61]  Mposkos E D, Kostopoulos D K. 2001. Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: A new ultrahigh-pressure metamorphic province established. Earth Planet Sci Lett, 192: 497-506
[62]  Mposkos E D, Krohe A. 2006. Pressure-temperature-deformation paths of closely associated ultra-high-pressure (diamond-bearing) crustal and mantle rocks of the Kimi complex: Implications for the tectonic history of the Rhodope Mountains, northern Greece. Can J Earth Sci, 43: 1755-1776
[63]  Mposkos E D, Wawrzenitz N. 1995. Metapegmatites and pegmatites bracketing the time of HP-metamorphism in polymetamorphic rocks of the E-Rhodope: Petrological and geochronological constraints. Geol Soc Grec Spec Publ, 2: 602-608
[64]  Nakamura D, Svojtka M, Naemura K, et al. 2004. Very high-pressure (>4 GPa) eclogite associated with the Moldanubian Zone garnet peridotite (Nové Dvory, Czech Republic). J metamorph Geol, 22: 593-603
[65]  Nakano N, Osanai Y, Owada M. 2007. Multiple breakdown and chemical equilibrium of silicic clinopyroxene under extreme metamorphic conditions in the Kontum Massif, central Vietnam. Am Mineral, 92: 1844-1855
[66]  Nasdala L, Massonne H J. 2000. Microdiamonds from the Saxonian Erzgebirge, Germany: In situ micro-Raman characterisation. Eur J Mineral, 12: 495-498
[67]  Ogasawara Y, Fukasawa K, Maruyama S. 2002. Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. Am Mineral, 87: 454-461
[68]  Okamoto K, Liou J G, Ogasawara Y. 2000. Petrology of the diamond-grade eclogite in the Kokchetav Massif, northern Kazakhstan. Island Arc, 9: 379-399
[69]  Pati?o Douce A E. 2005. Vapor-absent melting of tonalite at 15–32 kbar. J Petrol, 46: 275-290
[70]  Perraki M, Proyer A, Mposkos E, et al. 2006. Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece. Earth Planet Sci Lett, 241: 672-685
[71]  Ragozin A L, Liou J G, Shatsky V S, et al. 2009. The timing of the retrograde partial melting in the Kumdy-Kol region (Kokchetav Massif, Northern Kazakhstan). Lithos, 109: 274-284
[72]  R?tzler J, Kroner U. 2012. The Erzgebirge. In: Romer R L, F?rster H J, Kroner U, et al., eds. Granites of the Erzgebirge: Relation of Magmatism to the Metamorphic and Tectonic Evolution of the Variscan Orogen. Chapter 4, 53-71. Scientific Technical Report 12/15, GFZ German Research Centre for Geosciences
[73]  Rowley D B, Xue F, Tucker R D, et al. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth Planet Sci Lett, 151: 191-203
[74]  Rüpke L H, Morgan J P, Hort M, et al. 2004. Serpentine and the subduction zone water cycle. Earth Planet Sci Lett, 223: 17-34
[75]  Sawyer E W, Cesare B, Brown M. 2011. When the continental crust melts. Elements, 7: 229-234
[76]  Shatsky V S, Jagoutz E, Sobolev N V, et al. 1999. Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). Contrib Mineral Petrol, 137: 185-205
[77]  Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, melánge formation, and prism accretion. J Geophys Res, 91: 10229-10245
[78]  Sisson T W, Grove T L. 1993a. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol, 113: 143-166
[79]  Sisson T W, Grove T L. 1993b. Temperatures and H2O contents of low-MgO high-alumina basalts. Contrib Mineral Petrol, 113: 167-184
[80]  Skjerlie K P, Pati?o Douce A E. 2002. The fluid-absent partialmelting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa: Implications formelting in thickened continental crust and for subduction-zone processes. J Petrol, 43: 291-314
[81]  Smith D C. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310: 641-644
[82]  Sobolev N V, Shatsky V S. 1990. Diamond inclusions in garnet from metamorphic rocks: A new environment for diamond formation. Nature, 343: 742-746
[83]  Stüwe K. 1998. Heat sources of Cretaceous metamorphism in the Eastern Alps-a discussion. Tectonophisics, 287: 251-269
[84]  Teng F Z, Wadhwa M, Helz R T. 2007. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle. Earth Planet Sci Lett, 261: 84-92
[85]  Timms N E, Kinny P D, Reddy S M, et al. 2011. Relationship among titanium, rare earth elements, U-Pb ages and deformation microstructures in zircon: Implications for Ti-in-zircon thermometry. Chem Geol, 280: 33-46
[86]  Tipper E T, Galy A, Bickle M J. 2006. Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle. Earth Planet Sci Lett, 247: 267-279
[87]  Tomkins H S, Powell R, Ellis D J. 2007. The pressure dependence of the zirconium-in-rutile thermometer. J metamorph Geol, 25: 703-713
[88]  Tsai C H, Liou J G. 2000. Eclogite-facies relics and inferred ultrahigh-pressure metamorphism in the North Dabie complex, central China. Am Mineral, 85: 1–8
[89]  Vanderhaeghe O, Teyssier C. 2001. Partial melting and flow of orogens. Tectonophysics, 342: 451-472
[90]  von Blankenburg F, Davies J. 1995. Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14: 120-131
[91]  Wallis S, Tsuboi M, Suzuki K, et al. 2005. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 33: 129-132
[92]  Wang Q, Cong B. 1999. Exhumation of UHP Terranes: A case study from the Dabie Mountains, eastern China. Int Geol Rev, 41: 994-1004
[93]  Wang S J, Li S G, Chen L J, et al. 2013. Geochronology and geochemistry of leucosomes in the North Dabie Terrane, East China: Implication for post-UHPM crustal melting during exhumation. Contrib Mineral Petrol, 165: 1009-1029
[94]  Warren C J, Beaumont C, Jamieson R A. 2008. Deep subduction and rapid exhumation: Role of crustal strength and strain weakening in continental subduction and ultrahigh-pressure rock exhumation. Tectonics, 27, doi: 10.1029/2008TC002292
[95]  Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308: 841-844
[96]  Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol, 151: 413-433
[97]  Whitney D L, Teyssier C, Rey P F. 2009. The consequences of crustal melting in continental subduction. Lithosphere, 1: 323-327
[98]  Whittington A G, Treloar P J. 2002. Crustal anatexis and its relation to the exhumation of collisional orogenic belts, with particular reference to the Himalaya. Mineral Mag, 66: 53-91
[99]  Whittington A G, Hofmeister A M, Nabelek P I. 2009. Temperature-dependent thermal diffusivity of the Earth''s crust and implications for magmatism. Nature, 458: 319-321
[100]  Wu Y B, Zheng Y F, Zhang S, et al. 2007. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: Constraints on partial melting. J Metamorph Geol, 25: 991-1009
[101]  Xia Q X, Zheng Y F, Zhou L G. 2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chem Geol, 247: 36-65
[102]  Xu S T, Liu Y C, Chen G B, et al. 2005. Microdiamonds, their classification and tectonic implications for the host eclogites from the Dabie and Su-Lu regions in central eastern China. Mineral Mag, 69: 509-520
[103]  Xu S T, Okay A I, Ji S C, et al. 1992. Diamonds from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256: 80-82
[104]  Ye K, Cong B, Ye D. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734-736
[105]  Zen E. 1988. Thermal modelling of stepwise anatexis in a thrust-thickened sialic crust. Trans R Soc Edinb-Earth Sci, 79: 223-235
[106]  Zhang R Y, Liou J G, Ernst W G, et al. 1997. Metamorphic evolution of diamond-bearing and associated rocks from the Kokchetav Massif, Northern Kazakhstan. J Metamorph Geol, 15: 479-496
[107]  Zhao Z F, Zheng Y F, Chen R X, et al. 2007. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochim Cosmochim Acta, 71: 5244-5266
[108]  Zhao Z F, Zheng Y F, Wei C S, et al. 2008. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chem Geol, 253: 222-242
[109]  Zhao Z F, Zheng Y F, Zhang J, et al. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol, 328: 70-88
[110]  Zheng Y F, Fu B, Gong B, et al. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Sci Rev, 62: 105-161
[111]  Zheng Y F, Zhou J B, Wu Y B, et al. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. Int Geol Rev, 47: 851-871
[112]  Zheng Y F, Chen R X, Zhao Z F. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475: 327-358
[113]  Zheng Y F, Xia Q X, Chen R X, et al. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Sci Rev, 107: 342-374
[114]  Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5-48
[115]  Zheng Y F, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth Planet Space, 66: 93
[116]  Zhong Z, Suo S, You Z, et al. 2001. Major constituents of the Dabie collisional orogenic belt and partial melting in the ultrahigh-pressure unit. Int Geol Rev, 43: 226-236
[117]  Zong K, LiuY, Hu Z, et al. 2010. Melting-induced fluid flow during exhumation of gneisses of the Sulu ultrahigh-pressure terrane. Lithos, 120: 490-510
[118]  古晓锋, 刘贻灿, 邓亮鹏. 2013. 北大别罗田榴辉岩的同位素年代学和岩石成因及其在折返过程中的元素和同位素行为. 科学通报, 22: 2132-2137
[119]  李曙光, 李秋立, 侯振辉, 等. 2005. 大别山超高压变质岩的冷却史及折返机制. 岩石学报, 21: 1117-1124
[120]  李曙光, 何永胜, 王水炯. 2013. 大别造山带的去山根过程与机制: 碰撞后岩浆岩的年代学和地球化学制约. 科学通报, 58: 2316-2322
[121]  刘贻灿, 邓亮鹏, 古晓锋, 等. 2014. 北大别的多阶段高温变质作用与部分熔融及其地球动力学过程和大地构造意义. 地质科学, 49: 355-367
[122]  刘贻灿, 李曙光, 徐树桐, 等. 2000. 大别山北部榴辉岩和英云闪长质片麻岩锆石U-Pb年龄及多期变质增生. 高校地质学报, 6: 417-423
[123]  刘贻灿, 徐树桐, 李曙光, 等. 2001. 大别山北部镁铁-超镁铁质岩带中榴辉岩的分布与变质温压条件. 地质学报, 75: 385-395
[124]  刘贻灿, 李曙光. 2008. 俯冲陆壳内部的拆离和超高压岩石的多板片差异折返: 以大别-苏鲁造山带为例. 科学通报, 53: 2153-2165
[125]  魏春景, 周喜文. 2003. 变质相平衡的研究进展. 地学前缘, 10: 341-351
[126]  徐树桐, 苏文, 刘贻灿, 等. 1999. 大别山北部榴辉岩的发现及其岩相学特征. 科学通报, 44: 1452-1456
[127]  徐树桐, 刘贻灿, 陈冠宝, 等. 2003. 大别山、苏鲁地区榴辉岩中新发现的微粒金刚石. 科学通报, 48: 1069-1075
[128]  郑永飞, 赵子福, 陈伊翔. 2013. 大陆俯冲隧道过程: 大陆碰撞过程中的板块界面相互作用. 科学通报, 58: 2233-2239
[129]  Auzanneau E, Vielzeuf D, Schmidt M W. 2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol, 152: 125-148
[130]  Babeyko A Y, Sobolev S V, Trumbull R B, et al. 2002. Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna plateau. Earth Planet Sci Lett, 199: 373-388
[131]  Baldwin J A, Brown M, Schmitz M D. 2007. First application of titanium-in-zircon thermometry to ultrahigh-temperature metamorphism. Geology, 35: 295-298
[132]  Baziotis I, Mposkos E, Perdikatsis V. 2008. Geochemistry of amphibolitized eclogites and cross-cutting tonalitic-trondhjemitic dykes in the metamorphic kimi complex in East Rhodope (N.E. Greece): Implications for partial melting at the base of a thickened crust. Int J Earth Sci, 97: 459-477
[133]  Bourdon B, Tipper E T, Fitoussi C, et al. 2010. Chondritic Mg isotope composition of the Earth. Geochim Cosmochim Acta, 74: 5069-5083
[134]  Braun I, Raith M, Kumar G R R. 1996. Dehydration-melting phenomena in leptynitic gneisses and the generation of leucogranites: A case study from the Kerala Khondalite belt, southern India. J Petrol, 37: 1285-1305
[135]  Brown M. 2004. The mechanism of melt extraction from lower continental crust of orogens. Trans R Soc Edinb-Earth Sci, 95: 35-48
[136]  Brown M. 2010. Melting of the continental crust during orogenesis: The thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust. Can J Earth Sci, 47: 655-694
[137]  Brown M, Korhonen F J, Siddoway C S. 2011. Organizing melt flow through the crust. Element, 7: 261-266
[138]  Burg J P, Gerya T V. 2005. The role of viscous heating in Barrovian metamorphism of collisional orogens: Thermomechanical models and application to the Lepontine Dome in the Central Alps. J Metamorphic Geol, 23: 75-95
[139]  Carswell D A, Compagnoni R. 2003. Ultra-high pressure metamorphism. Eur Mineral Union Notes Mineral, 5: 1-508
[140]  Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequence. Contrib Mineral Petrol, 86: 107-118
[141]  Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1-14
[142]  Chopin C, Henry C, Michard A. 1991. Geology and petrology of the coesite-bearing terrane, Dora Maira massif, Western Alps. Eur J Mineral, 3: 263-291
[143]  Coleman R G, Wang X M. 1995. Ultrahigh Pressure Metamorphism. Cambridge: Cambridge University Press. 1-528
[144]  Cloos M, Shreve R. 1988a. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and Description. Pure Appl Geophys, 128: 455-500
[145]  Cloos M, Shreve R. 1988b. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and Discussion. Pure Appl Geophys, 128: 501-544
[146]  Davies J, von Blankenburg F. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett, 129: 85-102
[147]  Dobrzhinetskaya L, Schweinehage R, Massonne H J, et al. 2002. Silica precipitates in omphacite from eclogite at Alpe Arami, Switzerland: Evidence of deep subduction. J Metamorph Geol, 20: 481-492
[148]  Dobretsov N L, Sobolev N V, Shatsky V S, et al. 1995. Geotectonic evolution of diamondiferous paragneisses, Kokchetav Complex, northern Kazakhstan: The geologic enigma of ultrahigh-pressure crustal rocks within a Paleozoic foldbelt. Island Arc, 4: 267-279
[149]  England P C, Thompson A. 1986. Some thermal and tectonic models for crustal melting in continental collision zones. In: Coward M P, Ries A C, eds. Collision Tectonics. Geol Soc Spec Publ, 19: 83-94
[150]  Ernst W G, Liou J G. 2008. High- and ultrahigh-pressure metamorphism: Past results and future prospects. Am Mineral, 93: 1771-1786
[151]  Faure M, Lin W, Shu L, et al. 1999. Tectonics of the Dabieshan (Eastern China) and possible exhumation mechanism of ultra high-pressure rocks. Terra Nova, 11: 251-258
[152]  Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol, 154: 429-437
[153]  Galy A, Bar-Matthews M, Halicz L, et al. 2002. Mg isotope composition of carbonate: Insight from speleothem formation. Earth Planet Sci Lett, 201: 105-115
[154]  Gayk T, Kleinschrodt R, Langosch A, et al. 1995. Quartz exsolution in clinopyroxene of high-pressure granulite from the Munchberg Massif. Eur J Mineral, 7: 1217-1220
[155]  Ghiribelli B, Frezzotti M L, Palmeri R. 2002. Coesite in eclogites of the Lanterman range (Antarctica): Evidence from textural and Raman studies. Eur J Mineral, 14: 355-360
[156]  Gilotti J A, Ravna E K. 2002. First evidence for ultrahigh-pressure metamorphism in the North-East Greenland Caledonides. Geology, 30: 551-554
[157]  Gilotti J A, Nutman A P, Brueckner H K. 2004. Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism. Contrib Mineral Petrol, 148: 216-235
[158]  Gilotti J A, McClelland W C. 2007. Characteristics of, and a Tectonic Model for, Ultrahigh-pressure metamorphism in the Overriding Plate of the Caledonian Orogen. Int Geol Rev, 47: 777-797

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133