全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

俯冲带热结构的动力学模型研究

DOI: 10.1007/s11430-015-5107-5, PP. 736-751

Keywords: 俯冲板块,热结构,解析模型,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

?俯冲板块在俯冲过程中与周围地幔不断发生热交换,该热演化过程主要由热传导和平流物质交换两种作用构成.俯冲带热结构的演化是控制俯冲过程中物理化学性质转变的决定性因素之一,直接影响我们对矿物脱水、岩石部分熔融、岛弧火山喷发以及俯冲带地震等关键地质现象的理解.对俯冲带热结构的动力学模型研究主要分为解析方法和数值方法两种.解析模型能够从物理上给出对热结构具有最重要影响的控制因素,比如俯冲板块的年龄、速度和角度、剪切应力以及热传导系数等.数值模型能够进一步给出解析模型难以处理的各种复杂因素的影响,比如地幔楔的黏性变化、俯冲板块与周围地幔的耦合过程、与矿物岩石学的结合等.将模型结果实际应用于各俯冲带时由于各种影响因素很多,因此对俯冲带热结构的限定是一个非常复杂的过程.随着地球物理与地球化学各种定量观测手段的进步,将能够给出更多对俯冲带热结构的约束条件,进而更合理的解释与俯冲带相关的地质现象.

References

[1]  English J M, Johnston S T, Wang K. 2003. Thermal modelling of the Laramide orogeny: Testing the flat-slab subduction hypothesis. Earth Planet Sci Lett, 214: 619–632
[2]  Frohlich C. 2006. A simple analytical method to calculate the thermal parameter and temperature within subducted lithosphere. Phys Earth Planet Inter, 155: 281–285
[3]  Furukawa Y. 1993. Depth of the decoupling plate interface and thermal structure under arcs. J Geophys Res, 98: 20005–20013
[4]  Gerya T V, St?ckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21: 1056
[5]  Gerya T V, Yuen D A. 2003. Rayleigh-Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones. Earth Planet Sci Lett, 212: 47–62
[6]  Grove T L, Till C B, Lev E, et al. 2009. Kinematic variables and water transport control the formation and location of arc volcanoes. Nature, 459: 694–697
[7]  Grove T L, Till C B, Krawczynski M J. 2012. The role of H2O in subduction zone magmatism. Ann Rev Earth Planet Sci, 40: 413–439
[8]  Hacker B R, Abers G A, Peacock S M. 2003a. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res, 108: 2029
[9]  Hacker B R, Peacock S M, Abers G A, et al. 2003b. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res, 108: 2003
[10]  Hacker B R. 2008. H2O subduction beyond arcs. Geochem Geophy Geosyst, 9: Q03001
[11]  Hall P S, Kincaid C. 2001. Diapiric flow at subduction zones: A recipe for rapid transport. Science, 292: 2472–2475
[12]  Hall P S. 2012. On the thermal evolution of the mantle wedge at subduction zones. Phys Earth Planet Int, 198: 9–27
[13]  Hebert L B, Antoshechkina P, Asimow P, et al. 2009. Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics. Earth Planet Sci Lett, 278: 243–256
[14]  Honda S. 1985. Thermal structure beneath Tohoku, northeast Japan. Tectonophys, 112: 69–102
[15]  Honda S, Saito M. 2003. Small-scale convection under the back-arc occurring in the low viscosity wedge. Earth Planet Sci Lett, 216: 703–715
[16]  Honda S, Gerya T, Zhu G. 2010. A simple three-dimensional model of thermo-chemical convection in the mantle wedge. Earth Planet Sci Lett, 290: 311–318
[17]  Hyndman R D, Peacock S M. 2003. Serpentinization of the forearc mantle. Earth Planet Sci Lett, 212: 417–432
[18]  Jarrard R D. 1986. Relations among subduction parameters. Rev Geophys, 24: 217–284
[19]  Kelemen P B, Rilling J L, Parmentier E M, et al. 2003. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. In: Bebout E, Scholl W, Kirby H, et al., eds. Inside the Subduction Factory. Washington D C: AGU. 293–311
[20]  Kincaid C, Sacks I S. 1997. Thermal and dynamical evolution of the upper mantle in subduction zones. J Geophys Res, 102: 12295–12315
[21]  Kincaid C, Griffiths R W. 2003. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature, 425: 58–62
[22]  Kincaid C, Griffiths R W. 2004. Variability in flow and temperatures within mantle subduction zones. Geochem Geophy Geosyst, 5: Q06002
[23]  Kirby S H, William B D, Laura A S. 1991. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science, 252: 216–225
[24]  Kneller E A, van Keken P E, Katayama I, et al. 2007. Stress, strain, and B-type olivine fabric in the fore-arc mantle: Sensitivity tests using high-resolution steady-state subduction zone models. J Geophys Res, 112: B04406
[25]  Kummer T, Spinelli G A. 2008. Hydrothermal circulation in subducting crust reduces subduction zone temperatures. Geology, 36: 91–94
[26]  Lee C, King S D. 2009. Effect of mantle compressibility on the thermal and flow structures of the subduction zones. Geochem Geophy Geosyst, 10: Q01006
[27]  Lev E, Hager B H. 2011. Anisotropic viscosity changes the thermal structure of subduction zones. Geochem Geophy Geosyst, 12: Q04009
[28]  Le Voci G, Davies D R, Goes S, et al. 2014. A systematic 2-D investigation into the mantle wedge''s transient flow regime and thermal structure: Complexities arising from a hydrated rheology and thermal buoyancy. Geochem Geophy Geosyst, 15: 28–51
[29]  Lin S C, Kuo B Y, Chung S L. 2010. Thermomechanical models for the dynamics and melting processes in the Mariana subduction system. J Geophys Res, 115: B12403
[30]  Marton F C, Shankland T J, Rubie D C, et al. 2005. Effects of variable thermal conductivity on the mineralogy of subducting slabs and implications for mechanisms of deep earthquakes. Phys Earth Planet Inter, 149: 53–64
[31]  McKenzie D P. 1969. Speculations on the consequences and causes of plate motions. Geophys J Int, 18: 1–32
[32]  Molnar P, Freedman D, Shih J S. 1979. Lengths of intermediate and deep seismic zones and temperatures in downgoing slabs of lithosphere. Geophys J Int, 56: 41–54
[33]  Molnar P, England P. 1990. Temperatures, heat flux, and frictional stress near major thrust faults. J Geophys Res, 95: 4833–4856
[34]  Molnar P, England P. 1995. Temperatures in zones of steady-state underthrusting of young oceanic lithosphere. Earth Planet Sci Lett, 131: 57–70
[35]  Morishige M, van Keken P E. 2014. Along-arc variation in the 3-D thermal structure around the junction between the Japan and Kurile arcs. Geochem Geophy Geosyst, 15: 2225–2240
[36]  郑永飞, 赵子福, 陈伊翔. 2013. 大陆俯冲隧道过程: 大陆碰撞过程中的板块界面相互作用. 科学通报, 58: 2233-2239
[37]  Abers G A, van Keken P E, Kneller E A, et al. 2006. The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow. Earth Planet Sci Lett, 241: 387–397
[38]  Abers G A, Nakajima J, van Keken P E, et al. 2013. Thermal-petrological controls on the location of earthquakes within subducting plate. Earth Planet Sci Lett, 369–370: 178–187
[39]  Arcay D, Tric E, Doin M P. 2005. Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics. Phys Earth Planet Inter, 149: 133–153
[40]  Arcay D, Doin M P, Tric E, et al. 2006. Overriding plate thinning in subduction zones: Localized convection induced by slab dehydration. Geochem Geophy Geosyst, 7: Q02007
[41]  Agard P, Vitale-Brovarone A. 2013. Thermal regime of continental subduction: The record from exhumed HP-LT terranes (New Caledonia, Oman, Corsica). Tectonophy, 601: 206–215
[42]  Behn M D, Hirth G, Kelemen P B. 2007. Trench-parallel anisotropy produced by foundering of arc lower crust. Science, 317: 108–111
[43]  Billen M I, Gurnis M, Simons M. 2003. Multiscale dynamics of the Tonga-Kermadec subduction zone. Geophys J Int, 153: 359–388
[44]  Billen M I, Gurnis M. 2003. Comparison of dynamic flow models for the Central Aleutian and Tonga-Kermadec subduction zones. Geochem Geophy Geosyst, 4: 2001GC000295
[45]  Billen M I, Hirth G. 2007. Rheologic controls on slab dynamics. Geochem Geophy Geosyst, 8: Q08012
[46]  Burov E, Fran?ois T, Agard P, et al. 2014. Rheological and geodynamic controls on the mechanisms of subduction and HP/UHP exhumation of crustal rocks during continental collision: Insights from numerical models. Tectonophy, 631: 212–250
[47]  Cagnioncle A M, Parmentier E M, Elkin-Tanton L T. 2007. Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. J Geophys Res, 112: B09402
[48]  Carminati E, Negredo A M, Valera J L, et al. 2005. Subduction-related intermediate-depth and deep seismicity in Italy: Insights from thermal and rheological modelling. Phys Earth Planet Inter, 149: 65–79
[49]  Conder J A. 2005. A case for hot slab surface temperatures in numerical viscous flow models of subduction zones with an improved fault zone parameterization. Phys Earth Planet Inter, 149: 155–164
[50]  Connolly J A D. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett, 236: 524–541
[51]  Cooper L B, Ruscitto D M, Plank T, et al. 2012. Global variations in H2O/Ce: 1. Slab surface temperatures beneath volcanic arcs. Geochem Geophy Geosyst, 13: Q03024
[52]  Currie C A, Wang K, Hyndman R D, et al. 2004. The thermal effects of steady-state slab-driven mantle flow above a subducting plate: The Cascadia subduction zone and backarc. Earth Planet Sci Lett, 223: 35–48
[53]  Currie C A, Hyndman R D. 2006. The thermal structure of subduction zone back arcs. J Geophys Res, 111: B08404
[54]  Davies J H, Stevenson D J. 1992. Physical model of source region of subduction zone volcanics. J Geophys Res, 97: 2037–2070
[55]  Davies J H. 1999. Simple analytic model for the thermal structure of subduction zones. Geophys J Int, 139: 823–828
[56]  Dorbath C, Gerbault M, Carlier G, et al. 2008. Double seismic zone of the Nazca plate in northern Chile: High-resolution velocity structure, petrological implications, and thermomechanical modeling. Geochem Geophy Geosyst, 9: Q07006
[57]  England P, Wilkins C. 2004. A simple analytical approximation to the temperature structure in subduction zones. Geophys J Int, 159: 1138–1154
[58]  England P C, Katz R F. 2010. Melting above the anhydrous solidus controls the location of volcanic arcs. Nature, 467: 700–703
[59]  Peacock S M. 1996. Thermal and petrologic structure of subduction zones. In: Bebout E, Scholl W, Kirby H, et al., eds. Subduction Top to Bottom. Washington D C: AGU. 119–133
[60]  Peacock S M, Wang K. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science, 286: 937–939
[61]  Peacock S M. 2003. Thermal structure and metamorphic evolution of subducting slabs. In: Eiler J, eds. Inside the Subduction Factory. Washington D C: AGU. 7–22
[62]  Peacock S M, van Keken P E, Holloway S D, et al. 2005. Thermal structure of the Costa Rica-Nicaragua subduction zone. Phys Earth Planet Inter, 149: 187–200
[63]  Rotman H M, Spinelli G A. 2013. Global analysis of the effect of fluid flow on subduction zone temperatures. Geochem Geophy Geosyst, 14: 3268–3281
[64]  Royden L H. 1993. The steady state thermal structure of eroding orogenic belts and accretionary prisms. J Geophys Res, 98: 4487–4507
[65]  Rüpke L H, Morgan J P, Hort M, et al. 2004. Serpentine and the subduction zone water cycle. Earth Planet Sci Lett, 223: 17–34
[66]  Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361–379
[67]  Schmid C, Goes S, van der Lee S, et al. 2002. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth Planet Sci Lett, 204: 17–32
[68]  Schurr B, Asch G, Rietbrock A, et al. 2003. Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth Planet Sci Lett, 215: 105–119
[69]  Spinelli G A, Wang K. 2008. Effects of fluid circulation in subducting crust on Nankai margin seismogenic zone temperatures. Geology, 36: 887–890
[70]  Spinelli G A, Wang K. 2009. Links between fluid circulation, temperature, and metamorphism in subducting slabs. Geophys Res Lett, 36: L13302
[71]  Stern R J. 2002. Subduction zones. Rev geophys, 40: 2001RG000108
[72]  Syracuse E M, Abers G A. 2006. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophy Geosyst, 7: Q05017
[73]  Syracuse E M, van Keken P E, Abers G A. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90
[74]  Toks?z M N, Minear J W, Julian B R. 1971. Temperature field and geophysical effects of a downgoing slab. J Geophys Res, 76: 1113–1138
[75]  Tsumura N, Matsumoto S, Horiuchi S, et al. 2000. Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes. Tectonophys, 319: 241–260
[76]  Turcotte D L, Schubert G. 2002. Geodynamics. 2nd ed. New York: Cambridge University Press. 456
[77]  van Keken P E, Kiefer B, Peacock S M. 2002. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophy Geosyst, 3: 2001GC000256
[78]  van Keken P E, Currie C, King S D, et al. 2008. A community benchmark for subduction zone modeling. Phys Earth Planet Int, 171: 187–197
[79]  van Keken P E, Hacker B R, Syracuse E M, et al. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401
[80]  Wada I, Rychert C A, Wang K. 2011. Sharp thermal transition in the forearc mantle wedge as a consequence of nonlinear mantle wedge flow. Geophys Res Lett, 38: L13308
[81]  Wirth E A, Korenaga J. 2012. Small-scale convection in the subduction zone mantle wedge. Earth Planet Sci Lett, 357: 111–118
[82]  Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48
[83]  Zheng Y F, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth Planets Space, 66: 93

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133