全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

发展板块构造理论:从洋壳俯冲带到碰撞造山带

DOI: 10.1007/s11430-015-5097-3, PP. 711-735

Keywords: 地壳俯冲,大陆碰撞,碰撞后再造,岩浆作用,变质作用,大陆动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

?地壳俯冲和大陆碰撞是板块构造理论的核心,而认识大陆碰撞造山带的形成和演化,是发展板块构造理论的关键.根据俯冲地壳的性质,业已认识到不同类型的板块俯冲带.根据碰撞块体的性质及其衍生岩石的成分,已经认识到大陆碰撞形成了两种类型的造山带.弧陆碰撞造山带既含有古老地壳物质,也含有新生地壳物质,它们在碰撞后阶段的再造就能够产生不同地球化学成分的岩浆岩.而对于两个相对古老大陆之间的碰撞所形成的造山带来说,碰撞后岩浆作用只是俯冲带古老地壳的再造.碰撞造山带在岩石圈拉张作用下发生活化再造,不仅再造作用在构造体制上具有继承性,而且再造产物岩浆岩在地球化学成分上也具有继承性.因此,研究碰撞后体制下的造山带再造,认识大陆碰撞造山带深部物理化学差异、俯冲地壳性质与碰撞后岩浆岩之间的成因联系,建立碰撞后阶段大陆构造演化的基本规律,是构建大陆动力学体系、发展板块构造理论的关键.

References

[1]  Xu Z, Zheng Y F, Zhao Z F, Gong B. 2014b. The hydrous properties of subcontinental lithospheric mantle: Constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochim Cosmochim Acta, 143: 285–302
[2]  Yakubchuk A. 2004. Architecture and mineral deposit settings of the Altaid orogenic collage: A revised model. J Asian Earth Sci, 23: 761–779
[3]  Yang J H, Chung S L, Wilde S A, Wu F Y, Chu M F, Lo C H, Fan H R. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chem Geol, 214: 99–125
[4]  Yang Q L, Zhao Z F, Zheng Y F. 2012a. Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 146-147: 164–182
[5]  Yang Q L, Zhao Z F, Zheng Y F. 2012b. Slab-mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155: 442–440
[6]  Yin A, Nie S. 1993. An indenta tion model for the north and south China collision and the development of the Tanlu and Honam fault systems eastern Asia. Tectonics, 12: 801–813
[7]  Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 28: 211–280
[8]  Zhang S B, Zheng Y F, Zhao Z F, Wu Y B, Yuan H, Wu F Y. 2008. Neoproterozoic anatexis of Archean lithosphere: Geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Res, 163: 210–238
[9]  Zhang J J, Zheng Y F, Zhao Z F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110: 305–326
[10]  Zhang J, Zhao Z F, Zheng Y F, Dai M. 2010. Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos, 119: 512–536
[11]  Zhang J, Zhao Z F, Zheng Y F, Liu X M, Xie L W. 2012. Zircon Hf-O isotope and whole-rock geochemical constraints on origin of postcollisional mafic to felsic dykes in the Sulu orogen. Lithos, 136-139: 225–245
[12]  Zhang S B, Zheng Y F. 2013. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Res, 23: 1241–1260
[13]  Zhao X X, Coe R S. 1987. Paleomagnetic constraints on the collision and rotation of north and south China. Nature, 327: 141–144
[14]  Zhao X X, Coe R S, Gilder S A, Frost G M. 1996. Palaeomagnetic constraints on the palaeogeography of China: Implications for Gondwanaland. Australian J Earth Sci, 43: 643–672
[15]  Zhao Z F, Zheng Y F, Wei C S, Wu Y B. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93: 248–272
[16]  Zhao Z F, Zheng Y F, Wei C S, Wu F Y. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture. Lithos, 126: 99–114
[17]  Zhao Z F, Zheng Y F, Zhang J, Dai L Q, Liu X M. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol, 328: 70–88
[18]  Zhao Z F, Dai L Q, Zheng Y F. 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Scientific Reports, 3: 3413, doi: 10.1038/srep03413
[19]  Zhao Z F, Gao P, Zheng Y F. 2015. The source of Mesozoic granitoids in South China: Integrated geochemical constraints from the Taoshan batholith in the Nanling Range. Chem Geol, 395: 11–26
[20]  Zheng Y F, Wu Y B, Chen F K, Gong B, Li L, Zhao Z F. 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim Cosmochim Acta, 68: 4145–4165
[21]  Zheng Y F, Zhou J B, Wu Y B, Xie Z. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. Intern Geol Rev, 47: 851–871
[22]  Zheng Y F, Zhang S B, Zhao Z F, Wu Y B, Li X H, Li Z X, Wu F Y. 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 96: 127–150
[23]  Zheng Y F, Wu R X, Wu Y B, Zhang S B, Yuan H L, Wu F Y. 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Res, 163: 351–383
[24]  Zheng Y F, Chen R X, Zhao Z F. 2009b. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475: 327–358
[25]  Zheng Y F, Xia Q X, Chen R X, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Sci Rev, 107: 342–374
[26]  Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48
[27]  Zheng Y F, Xiao W J, Zhao G C. 2013. Introduction to tectonics of China. Gondwana Res, 23: 1189–1206
[28]  Zheng Y F, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth, Planets Space, 66: 93, doi: 10.1186/1880-5981-66-93
[29]  Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29: 26–33
[30]  Zhou L G, Xia Q X, Chen R X, Zheng Y F. 2015. Tectonic evolution from oceanic subduction to continental collision during the closure of Paleotethys: Geochronological and geochemical constraints from metamorphic rocks in the Hong''an orogen. Gondwana Res, http://dx.doi.org/10.1016/j.gr.2014.03.009
[31]  Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Hou Z Q, Mo X X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res, 23: 1429–1454
[32]  Zindler A, Hart S R. 1986. Chemical geodynamics. Ann Rev Earth Planet Sci, 14: 493–571
[33]  高天山, 陈江峰, 谢智, 闫俊, 钱卉. 2004. 苏鲁超高压变质带中三叠纪石岛杂岩体的地球化学研究. 岩石学报, 20: 1025–1038
[34]  郭敬辉, 陈福坤, 张晓曼, Siebel W, 翟明国. 2005. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程: 锆石U-Pb年代学. 岩石学报, 21: 1281–1301
[35]  纪伟强, 吴福元, 锺孙霖, 刘传周. 2009. 西藏南部冈底斯岩基花岗岩时代与岩石成因. 中国科学D辑: 地球科学, 39: 849–871
[36]  杨进辉, 吴福元. 2009. 华北东部三叠纪岩浆作用与克拉通破坏. 中国科学D辑: 地球科学, 39: 910–921
[37]  赵子福, 郑永飞. 2009. 俯冲大陆岩石圈重熔: 大别-苏鲁造山带中生代岩浆岩成因. 中国科学D辑: 地球科学, 39: 888–909
[38]  郑永飞, 叶凯, 张立飞. 2009. 发展板块构造: 从洋壳俯冲到大陆碰撞. 科学通报, 54: 1799–1803
[39]  郑永飞, 赵子福, 陈伊翔. 2013. 大陆俯冲隧道过程: 大陆碰撞过程中的板块界面相互作用. 科学通报, 58: 2233–2239
[40]  周建波, 郑永飞, 李龙, 谢智. 2001. 扬子大陆板块俯冲的构造加积楔. 地质学报, 75: 338–352
[41]  Allegre C. 1988. The Behavior of the Earth: Continental and Seafloor Mobility. Cambridge, Massschusetts and London: Harvard University Press. 272
[42]  Anderson D. 2007. New Theory of the Earth. 2nd ed. Cambridge, New York: Cambridge University Press. 384
[43]  Barbarin B. 1998. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46: 605–626
[44]  Beaumont C, Ellis S, Pfiffner A. 1999. Dynamics of sediment subduction-accretion at convergent margins: Short-term modes, long-term deformation, and tectonic implications. J Geophys Res, B104: 17573–17601
[45]  Beaumont C, Jamieson R A, Butler J P, Warren C J. 2009. Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett, 287: 116–129
[46]  Brenan J M, Shaw H F, Phinney D L, Ryerson F J. 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for high field strength elements depletions in island-arc basalts. Earth Planet Sci Lett, 128: 327–339
[47]  Brown D, Spadea P. 1999. Processes of forearc and accretionary complex formation during arc-continental collision in the southern Ural Mountains. Geology, 27: 649–652
[48]  Brown D, Ryan P D, Afonso J C, Boutelier D, Burg J P, Byrne T, Calvert A, Cook F, DeBari S, Dewey J F, Gerya T V, Harris R, Herrington R, Konstantinovskaya E, Reston T, Zagorevski A. 2011. Arc-continent collision: The making of an orogen. In: Brown D, Ryan P D, eds. Arc-Continent Collision. Berlin Heidelberg: Springer-Verlag. 477–493
[49]  Burchfiel B C. 1980. Plate tectonics and the continents: A review. In: Burchfiel B C, Oliver J E, Silver L T, eds. Continental Tectonics. Washington D C: National Academies Press. 15–25
[50]  Cawood P A, Kroner A, Collins W J, Kusky T M, Mooney W D, Windley B F. 2009. Accretionary orogens through Earth history. Geol Soc Spec Publ, 318: 1–36
[51]  Chauvel C, Hofmann A W, Vidal P. 1992. HIMU-EM: The French Polynesian connection. Earth Planet Sci Lett, 110: 99–119
[52]  Chen J F, Xie Z, Li H M, Zhang X D, Zhou T X, Park Y S, Ahn K S, Chen D G, Zhang X. 2003. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochem J, 37: 35–46
[53]  Chen L, Zhao Z F, Zheng Y F. 2014. Origin of andesitic rocks: Geochemical constraints from Mesozoic volcanics in the Luzong basin, South China. Lithos, 190: 220–239
[54]  Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequence. Contrib Mineral Petrol, 86: 107–118
[55]  Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1–14
[56]  Chung S L, Chu M F, Zhang Y Q, Xie Y W, Lo C H, Lee T Y, Lan C Y, Li X H, Zhang Q, Wang Y Z. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev, 68: 173–196
[57]  Clemens J D, Wall V J. 1988. Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos, 21: 53–66
[58]  Cloos M. 1983. Comparative study of melange matrix and metashales from the Franciscan subduction complex with the basal Great Valley sequence, California. J Geol, 91: 291–306
[59]  Cloos M. 1984. Flow melanges and the structural evolution of accretionary wedges. In: Melanges-Their Nature, Origin and Significance. Spec Paper Geol Soc Amer, 198: 71–79
[60]  Cloos M, Shreve R L. 1988a. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure Appl Geophys, 128: 456–500
[61]  Cloos M, Shreve R L. 1988b. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion. Pure Appl Geophys, 128: 501–505
[62]  Collins W J, Richards S W. 2008. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology, 36: 559–562
[63]  Condie K C. 2007. Accretionary orogens in space and time. Geol Soc Am Memoirs, 200: 145–158
[64]  Dahlen F A. 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annu Rev Earth Planet Sci, 18: 55–99
[65]  Dai L Q, Zhao Z F, Zheng Y F, Li Q, Yang Y, Dai M. 2011. Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett, 308: 224–244
[66]  Dai L Q, Zhao Z F, Zheng Y F, Zhang J. 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen. Chem Geol, 334: 99–121
[67]  Dai L Q, Zhao Z F, Zheng Y F. 2014. Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts. Geochem Geophys Geosyst, 15: 3762–3779
[68]  Dai L Q, Zhao Z F, Zheng Y F. 2015. Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong''an-Dabie orogens. Gondwana Res, 27: 1236–1254
[69]  Dasgupta R, Jackson M G, Lee C T A. 2010. Major element chemistry of ocean island basalts—Conditions of mantle melting and heterogeneity of mantle source. Earth Planet Sci Lett, 289: 377–392
[70]  Davis D, Suppe J, Dahlen F A. 1983. Mechanics of fold and thrust belts and accretionary wedges. J Geophys Res, B88: 1153–1172
[71]  Dewey J F, Bird J M. 1970. Mountain belts and the global tectonics. J Geophys Res, B75: 2625–2647
[72]  Dietz R S. 1961. Continent and ocean basin evolution by spreading of the sea floor. Nature, 190: 854–857
[73]  Eiler J M, Schiano P, Valley J W, Kita N T, Stolper E M. 2007. Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle. Geochem Geophys Geosyst, 8: Q09012
[74]  Elsasser W M. 1971. Sea-floor spreading as thermal convection. J Geophys Res, 76: 1101–1112
[75]  Elliott T, Plank T, Zindler A, White W, Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc. J Geophys Res, B102: 14991–15019
[76]  Elliott T. 2003. Tracers of the slab. In: Eiler J, ed. Inside the Subduction Factory, Amer Geophys Union Geophys Monograph, 138: 23–45
[77]  Enkin R J, Courtillot V, Leloup Ph, Yang Z Y, Xing L, Zhang J, Zhuang Z. 1992. The paleomagnetic record of Uppermost Permian, Lower Triassic rocks from the South China Block. Geophys Res Lett, 19: 2147–2150
[78]  Ernst W G. 2005. Alpine and Pacific styles of Phanerozoic mountain building: Subduction-zone petrogenesis of continental crust. Terra Nova, 17: 165–188
[79]  Ernst W G, Tsujimori T, Zhang R Y, Liou J G. 2007. Permo-Triassic collision, subduction-zone metamorphism, and tectonic exhumation along the East Asian continental margin. Annu Rev Earth Planet Sci, 35: 73–110
[80]  Foley S F, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 837–840
[81]  Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion. Geophys J Int, 43: 163–200
[82]  Frisch W, Meschede M, Blakey R. 2011. Plate Tectonics: Continental Drift and Mountain Building. Berlin Heidelberg: Springer. 212
[83]  Gao P, Zhao Z F, Zheng Y F. 2014. Petrogenesis of Triassic granites from the Nanling Range in South China: Implications for geochemical diversity in granites. Lithos, 210-211: 40–56
[84]  Gerya T V, St?ckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21: 1056, doi: 10.1029/2002TC001406
[85]  Gilder S A, Leloup P H, Courtillot V, Chen Y, Col R, Zhao X X, Xiao W J, Halim N, Cogne J P, Zhu R X. 1999. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data. J Geophys Res, B104: 15365–15390
[86]  Green T H. 1981. Experimental evidence for the role of accessory phases in magma genesis. J Volcanol Geotherm Res, 10: 405–422
[87]  Guillot S, Mahéo G, de Sigoyer J, Hattori K H, Pêcher A. 2008. Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks. Tectonophysics, 451: 225–241
[88]  Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin Heidelberg: Springer-Verlag. 175–205
[89]  Hacker B R, Andersen T B, Johnston S, Kylander-Clark A R C, Peterman E M, Walsh E O, Young D. 2010. High-temperature deformation during continental-margin subduction and exhumation: The ultrahigh-pressure Western Gneiss Region of Norway. Tectonophysics, 480: 149–171
[90]  Hart S R. 1988. Heterogeneous mantle domains: signatures, genesis, and mixing chronologies. Earth Planet Sci Lett, 90: 273–296
[91]  Hess H H. 1962. History of ocean basins. In: Engele A E J, James H L, Leonard B F, eds. Petrologic Studies—Volume in Honor of A. F. Buddington. Boulder: Geol Soc Am. 599–620
[92]  Hofmann A W, White W M. 1982. Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett, 57: 421–436
[93]  Hofmann A. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 90: 297–314
[94]  Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219–229
[95]  Holdsworth R E, Hand L M, Miller J A, Buick I S. 2001. Continental reactivation and reworking: An introduction. Geol Soc Spec Publ, 184: 1–12
[96]  Howell D G. 1989. Tectonics of Suspect Terranes: Mountain Building and Continental Growth. London: Chapman & Hall. 231
[97]  Jackson M G, Hart S R, Koppers A A P, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell J A. 2007. The Return of Subducted Continental crust in Samoan Lavas. Nature, 448: 684–687
[98]  Jackson M G, Dasgupta R. 2008. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett, 276: 175–186
[99]  Jagoutz O, Müntener O, Schmidt M W, Burg J P. 2011. The respective roles of flux- and decompression melting and their relevant liquid lines of descent for continental crust formation: Evidence from the Kohistan arc. Earth Planet Sci Lett, 303: 25–36
[100]  Jahn B M, Wu F Y, Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans Roy Soc Edinburgh-Earth Sci, 91: 181–193
[101]  Karig D E, Sharman G F. 1975. Subduction and accretion in trenchs. Geol Soc Am Bull, 86: 377–389
[102]  Kearey P, Klepeis K A, Vine F J. 2009. Globle Tectonics. Chiechester: Wiley-Blackwell. 482
[103]  Kylander-Clark A R C, Hacker B R, Johnson C M, Beard B L, Mahlen N J. 2009. Slow subduction and rapid exhumation of a thick ultrahigh-pressure terrane. Tectonics, 28: TC002251
[104]  Lardeaux J M, Ledru P, Daniel I, Duchene S. 2001. The Variscan French Massif Central—A new addition to the ultrahigh pressure metamorphic ‘club'': Exhumation processes and geodynamic consequences. Tectonophysics, 332: 143–167
[105]  Law R D, Butler R W H, Holdsworth R E, Krabbendam M, Strachan R A. 2010. Continental tectonics and mountain building. The Legacy of Peach and Horne: An Introduction. Geol Soc Spec Publ, 335: 1–6
[106]  Leggett J K, McKerrow W S, Eales M H. 1979. The Southern Uplands of Scotland: A Lower Paleozoic accretionary prism. J Geol Soc London, 136: 755–770
[107]  Le Pichon X. 1968. Sea-floor spreading and continental drift. J Geophys Res, B73: 3661–3697
[108]  Li Z H, Gerya T V. 2009. Polyphase formation and exhumation of high- to ultrahigh pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China. J Geophys Res, 114: B09406
[109]  Lin J L, Fuller M. 1990. Paleomagnetism, North China and South China collision, and the Tan-Lu fault. Philos Trans Roy Soc London, A331: 589–598
[110]  Liou J G, Ernst W G, Song S G, Jahn B M. 2009a. Tectonics and HP-UHP metamorphism of northern Tibet—Preface. J Asian Earth Sci, 35: 191–198
[111]  Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn J G. 2009b. Ultrahigh-pressure minerals and metamorphic terranes—The view from China. J Asian Earth Sci, 35: 199–231
[112]  Liu F L, Liou J G. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. J Asian Earth Sci, 40: 1–39
[113]  Maruyama S, Liou J G, Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation. Intern Geol Rev, 38: 485–594
[114]  McKenzie D P, Parker R L. 1967. The North Pacific, an example of tectonics on a sphere. Nature, 216: 1276–1280
[115]  McKenzie D. 1989. Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett, 95: 53–72
[116]  McKerrow W S, Leggett J K, Eales M H. 1977. Imbricate thrust model of the Southern Uplands of Scotland. Nature, 267: 237–239
[117]  Mo X X, Niu Y L, Dong G C, Zhao Z D, Hou Z Q, Zhou S, Ke S. 2008. Contribution of syncollisional felsicmagmatismto continental crust growth: a case study of the Paleocene Linzizong Volcanic Succession in southern Tibet. Chem Geol, 250: 49–67
[118]  Morgan W J. 1968. Rises, trenches, great faults and crustal blocks. J Geophys Res, B73: 1959–1982
[119]  Nicholls I A, Harris K L. 1980. Experimental rare earth element partitioning coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids. Geochim Cosmochim Acta, 44: 287–308
[120]  Oreskes N. 2003. Plate Tectonics: An Insider''s History of the Modern Theory of the Earth. Boulder: Westview Press. 424
[121]  Peacock S M, Wang K. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science, 286: 937–939
[122]  Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 145: 325–394
[123]  Plank T. 2014. The Chemical composition of subducting sediments. Treatise Geochem, 4: 607–629
[124]  Platt J P. 1986. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol Soc Am Bull, 97: 1037–1053
[125]  Rubatto D, Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta, 67, 2173–2187
[126]  Rubatto D, Hermann J. 2007. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol, 241: 62–87
[127]  Rudnick R L, Barth M G, Horn I, McDonough W F. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287: 278–281
[128]  Rudnick R L, Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1–64
[129]  Runcorn S K. 1962. Towards a theory of continental drift. Nature, 193: 313–314
[130]  Ryan P D, Mac Niocaill C. 1999. Continental tectonics: An introduction. Geol Soc Spec Publ, 164: 1–5
[131]  Ryerson F J, Watson E B. 1987. Rutile saturation in magmas: Implications for Ti-Nb-Ta depletion in island-arc basalts. Earth Planet Sci Lett, 86: 225–239
[132]  Schiano P, Clocchiatti R, Shimizu N, Maury R C, Jochum K P, Hofmann A W. 1995. Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature, 377: 595–600
[133]  Schmidt M W, Dardon A, Chazot G, Vannucci R. 2004. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth Planet Sci Lett, 226: 415–432
[134]  Sengor A M C, Okurogullari A H. 1991. The role of accretionary wedges in the growth of continents: Asiatic examples from Argand to plate tectonics. Ecl Geol Helv, 84: 535–597
[135]  Sengor A M C, Natal''n B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364: 299–304
[136]  Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, mélange formation, and prism accretion. J Geophys Res, B91: 10229–10245
[137]  Sisson T W, Bacon R, 1992. Garnet/high-silica rhyolite trace element partition coefficients measured by ion microprobe. Geochim Cosmochim Acta, 56: 2133–2136
[138]  Smith D C. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310: 641–644
[139]  Song S G, Niu Y L, Su L, Xia X H. 2013. Tectonics of the North Qilian orogen, NW China. Gondwana Res, 23: 1378–1401
[140]  Song S G, Niu Y L, Su L, Zhang C, Zhang L F. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth Sci Rev, 129: 59–84
[141]  Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos, 170–171: 208–223
[142]  Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012, doi: 10.1029/2001RG000108
[143]  Stern R J. 2010. The anatomy and ontogeny of modern intra-oceanic arc systems. Geol Soc Spec Publ, 338: 7–34
[144]  Stracke A. 2012. Earth''s heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chem Geol, 330–331: 274–299
[145]  Syracuse E M, van Keken P E, Abers G A. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90
[146]  Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Rev Geophys, 33: 241–165
[147]  Tomecek S. 2009. Plate Tectonics. New York: Chelsea House Publishing. 101
[148]  Turner S, Caulfield J, Turner M, van Keken P, Maury R, Sandiford M, Prouteau G. 2011. Recent contribution of sediments and fluids to the mantle''s volatile budget. Nature Geosci, 5: 50–54
[149]  Uyeda S. 1982. Subduction zones: An introduction to comparative subductology. Tectonophysics, 81: 133–159
[150]  Uyeda S. 1983. Comparative subductology. Episodes, 5: 19–24
[151]  van Keken P E, Hacker B R, Syracuse E M, et al. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401
[152]  van Westrenen W, Blundy J, Wood B. 1999. Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am Mineral, 84: 838–847
[153]  Vine F J, Matthews D H. 1963. Magnetic anomalies over ocean ridges. Nature, 199: 947–949
[154]  von Huene R, Scholl D W. 1991. Observation at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys, 29: 279–316
[155]  von Huene R, Scholl D W. 1993. The return of sialic material to the mantle indicated by terrigeneous material subducted at convergent margins. Tecronophysics, 219: 163–175
[156]  Wallis S, Tsuboi M, Suzuki K, Fanning M, Jiang L L, Tanaka T. 2005. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 33: 129–132
[157]  Wang Y, Zhao Z F, Zheng Y F, Zhang J J. 2011. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos, 125: 940–955
[158]  Wang Y J, Fan W M, Zhang G W, Zhang Y H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res, 23: 1273–1305
[159]  Wang H, Wu Y B, Gao S, Zheng J P, Liu Q, Liu X C, Qin Z W, Yang S H, Gong H J. 2014. Deep subduction of continental crust in accretionary orogen: Evidence from U-Pb dating on diamond-bearing zircons from the Qinling orogen, central China. Lithos, 190–191: 420–429
[160]  Wegener A L. 1912. Die Entstehung der Kontinente. Geol Rundsch, 3: 276–292
[161]  Wei C S, Zheng Y F, Zhao Z F, Valley J W. 2002. Oxygen and neodymium isotope evidence for recycling of juvenile crust in northeast China. Geology, 30: 375–378
[162]  Whitehouse M J, Platt J P. 2003. Dating high-grade metamorphism: constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol, 145: 61–74
[163]  Wilson J T. 1965. A new class of faults and their bearing on continental drift. Nature, 207: 343–347
[164]  Wu R X, Zheng Y F, Wu Y B, Zhao Z F, Zhang S B, Liu X, Wu F Y. 2006. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Res, 146: 179–212
[165]  Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong''an-Dabie-Sulu orogenic belt in central China. Gondwana Res, 23: 1402–1428
[166]  Wyllie P J. 1984. Constraints imposed by experimental petrology on possible and impossible magma sources and products. Philos Trans Roy Soc, A310: 439–456
[167]  Xiao W J, Han C M, Yuan C, Sun M, Zhao G C, Shan Y H. 2010. Transitions among Mariana-, Japan-, Cordillera- and Alaska-type arc systems and their final juxtapositions leading to accretionary and collisional orogenesis. Geol Soc Spec Publ, 338: 35–53
[168]  Xiao W J, Windley B F, Allen M B, Han C M. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res, 23: 1316–1341
[169]  Xiong X L, Keppler H, Audetat A, Ni H W, Sun W D, Li Y. 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochim Cosmochim Acta, 75: 1673–1692
[170]  Xu Z, Zhao Z F, Zheng Y F. 2012a. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos, 146–147: 202–217
[171]  Xu Y G, Zhang H H, Qiu, H N, Ge W C, Wu F Y. 2012b. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone? Chem Geol, 328: 168–184
[172]  Xu Z, Zheng Y F, He H Y, Zhao Z F. 2014a. Phenocryst He-Ar isotopic and whole-rock geochemical constraints on the origin of crustal components in the mantle source of Cenozoic continental basalt in eastern China. J Volcanol Geotherm Res, 272: 99–110

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133