全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

相变对金星地幔对流影响的数值模拟

DOI: 10.1007/s11430-015-5069-7, PP. 611-624

Keywords: 金星,灾难性表面更新,地幔对流,相变

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用三维球壳模型通过数值模拟研究了相变对金星地幔对流的影响.模型假定地幔物质流变特性与温度和压力强相关,并包含橄榄石到尖晶石的放热相变和尖晶石到钙钛矿的吸热相变.通过对不同瑞利数、不同相变Clapeyron斜率和不同相变深度的模型的计算分析,发现:(1)吸热相变对相变面上下物质交换具有阻碍作用,增加相变Clapeyron斜率的绝对值,会减小相变面处的径向质量流和归一化径向质量流、并减少地幔热柱个数,即上下物质交换减弱、相变的阻碍作用加强、对流波长增加;(2)增大瑞利数Ra,也使对流波长增加或热柱个数减少,但对相变面上下物质交换的影响主要反映在对流强度与Ra的关系上,即Ra增加,对流强度增加,相变面处的径向质量流增大,上下物质交换量增大.而Ra增加,归一化径向质量流变化不大,即Ra对相变的阻碍作用的影响不大.这不同于二维模型中瑞利数的增加将很大程度上增加相变的阻碍作用的结论;(3)吸热相变面深度的少许增加会略微减少热柱个数,但对相变面上下物质交换的影响很小.虽然与已有研究一致,吸热相变能阻碍相变面上下物质交换,但这种阻碍作用在三维模型中并不会导致物质在界面上下大量堆积.上下物质交换量随时间变化不大,地幔对流结构相对稳定.这与二维模型中存在周期性的大量物质交换明显不同.这说明相变的作用将难以导致金星表面的大量岩浆作用,或者说相变难以导致金星灾难性的表面更新.

References

[1]  张健, 石耀霖. 2007. 金星非单调冷却热演化历史分析. 地球物理学报, 50: 146-152
[2]  Anderson D L. 1967. Phase changes in the upper mantle. Science, 157: 1165-1173
[3]  Arkani-Hamed J, Toksoz M N. 1984. Thermal evolution of Venus. Phys Earth Planet Inter, 34: 232-250
[4]  Armann M, Tackley P J. 2012. Simulating the thermochemical magmatic and tectonic evolution of Venus''s mantle and lithosphere: Two-dimensional models. J Geophys Res, 117: E12003
[5]  Phillips R J, Raubertas R F, Arvidson R E, et al. 1992. Impact craters and Venus resurfacing history. J Geophys Res, 97: 15923-15948
[6]  Reese C C, Solomatov V S. 1999. Non-Newtonian stagnant lid convection and magmatic resurfacing on Venus. Icarus, 139: 67-80
[7]  Steinbach V, Yuen D A, Zhao W L. 1993. Instabilities from phase-transitions and the timescales of mantle thermal evolution. Geophys Res Lett, 20: 1119-1122
[8]  Stevenson D J, Spohn T, Schubert G. 1983. Magnetism and Thermal Evolution of the Terrestrial Planets. Icarus, 54: 466-489
[9]  Strom R G, Schaber G G, Dawson D D. 1994. The global resurfacing of Venus. J Geophys Res, 99: 10899-10926
[10]  Tackley P J, Stevenson D J, Glatzmaier G A, et al. 1993. Effects of an endothermic phase-transition at 670 km depth in a spherical model of convection in the Earth''s mantle. Nature, 361: 699-704
[11]  Tackley P J, Stevenson D J, Glatzmaier G A, et al. 1994. Effects of multiple phase-transitions in a 3-dimensional spherical model of convection in Earth''s mantle. J Geophys Res, 99: 15877-15901
[12]  Turcotte D L. 1993. An episodic hypothesis for Venusian tectonics. J Geophys Res, 98: 17061-17068
[13]  Turcotte D L, Morein G, Roberts D, et al. 1999. Catastrophic resurfacing and episodic subduction on Venus. Icarus, 139: 49-54
[14]  Turcotte D L, Schubert G. 2002. Geodynamics. Cambridge: Cambridge University Press
[15]  Weinstein S A. 1993. Catastrophic overturn of the earth''s mantle driven by multiple phase-changes and internal heat-generation. Geophys Res Lett, 20: 101-104
[16]  Weinstein S A. 1996. The potential role of non-Newtonian rheology in the resurfacing of Venus. Geophys Res Lett, 23: 511-514
[17]  Zhong S J. 2005. Dynamics of thermal plumes in three-dimensional isoviscous thermal convection. Geophys J Int, 162: 289-300
[18]  Bjonnes E E, Hansen V L, James B, et al. 2012. Equilibrium resurfacing of Venus: Results from new Monte Carlo modeling and implications for Venus surface histories. Icarus, 217: 451-461
[19]  Bond T M, Warner M R. 2006. Dating Venus: Statistical models of magmatic activity and impact cratering. In: 37th Lunar and Planetary Science Conference. League City, Texas. 1957
[20]  Christensen U R, Yuen D A. 1985. Layered convection induced by phase transitions. J Geophys Res, 90: 10291-10300
[21]  Fowler A C, O''Brien S B G. 1996.A mechanism for episodic subduction on Venus. J Geophys Res, 101: 4755-4763
[22]  Hansen V L, Young D A. 2007. Venus''s evolution: A synthesis. Geol Soc Am Bull, 419: 255-273
[23]  Hauck S A, Phillips R J. 1998. Venus: Crater distribution and plains resurfacing models. J Geophys Res, 103: 13635-13642
[24]  Herrick R R. 1994. Resurfacing history of Venus. Geology, 22: 703-706
[25]  Huang J S, Yang A, Zhong S J. 2013. Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics. Earth Planet Sci Lett, 362: 207-214
[26]  Ito E, Akaogi M, Topor L, et al. 1990. Negative pressure-temperature slopes for reactions forming Mgsio3 perovskite from calorimetry. Science, 249: 1275-1278
[27]  Ito E, Takahashi K. 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J Geophys Res, 94: 10637-10646
[28]  Karato S, Wu P. 1993. Rheology of the upper mantle—A synthesis. Science, 260: 771-778
[29]  Kiefer W S, Hager B H. 1991. A mantle plume model for the equatorial highlands of Venus. J Geophys Res, 96: 20947-20966
[30]  Larson R L. 1991.Geological consequences of superplumes. Geology, 19: 963-966
[31]  Moresi L, Solomatov V. 1998. Mantle convection with a brittle lithosphere: Thoughts on the global tectonic styles of the Earth and Venus. Geophys J Int, 133: 669-682
[32]  Namiki N, Solomon S C. 1994. Impact crater densities on volcanos and coronae on Venus—Implications for volcanic resurfacing. Science, 265: 929-933
[33]  Nimmo F, Mckenzie D. 1998.Volcanism and tectonics on Venus. Annu Rev Earth Planet, 26: 23-51
[34]  O''Neill C, Nimmo F. 2010. The role of episodic overturn in generating the surface geology and heat flow on Enceladus. Nature Geosci, 3: 88-91
[35]  Ogawa M. 2000. Numerical models of magmatism in convecting mantle with temperature-dependent viscosity and their implications for Venus and Earth. J Geophys Res, 105: 6997-7012
[36]  Papuc A M, Davies G F. 2012. Transient mantle layering and the episodic behaviour of Venus due to the ‘basalt barrier'' mechanism. Icarus, 217: 499-509
[37]  Parmentier E M, Hess P C. 1992. Chemical differentiation of a convecting planetary interior—Consequences for a one plate planet such as Venus. Geophys Res Lett, 19: 2015-2018
[38]  Peltier W R, Solheim L P. 1992. Mantle phase-transitions and layered chaotic convection. Geophys Res Lett, 19: 321-324
[39]  Reese C C, Solomatov V S, Baumgardner J R, et al. 1999. Stagnant lid convection in a spherical shell. Phys Earth Planet Inter, 116: 1-7
[40]  Roberts J H, Zhong S. 2006. Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J Geophys Res, 111: E06013
[41]  Ringwood A E. 1991. Phase-transformations and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta, 55: 2083-2110
[42]  Romeo I, Turcotte D L. 2010. Resurfacing on Venus. Planet Space Sci, 58: 1374-1380
[43]  Schaber G G, Strom R G, Moore H J, et al. 1992. Geology and distribution of impact craters on Venus—What are they telling us. J Geophys Res, 97: 13257-13301
[44]  Schubert G, Solomatov V S, Tackley P J, et al. 1997. Mantle convection and the thermal evolution of Venus. In: Bougher D M, Hunten S W, Philips R J, eds. Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. Tucson: University of Arizona Press. 1245-1288
[45]  Schubert G, Turcotte D L, Olson P. 2001. Mantle Convection in the Earth and Planets. New York: Cambridge University Press
[46]  Schubert G, Yuen D A, Turcotte D L. 1975. Role of phase transitions in a dynamic mantle. Geophys J R Astr Soc, 42: 705-735
[47]  Smrekar S E, Phillips R J. 1991. Venusian highlands: Geoid to topography ratios and their implications. Earth Planet Sci Lett, 107: 582-597
[48]  Smrekar S E, Sotin C. 2012. Constraints on mantle plumes on Venus: Implications for volatile history. Icarus, 217: 510-523
[49]  Smrekar S E, Stofan E R, Mueller N, et al. 2010. Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science, 328: 605-608
[50]  Solomatov V S, Moresi L N. 1996. Stagnant lid convection on Venus. J Geophys Res, 101: 4737-4753
[51]  Stein C, Fahl A, Hansen U. 2010. Resurfacing events on Venus: Implications on plume dynamics and surface topography. Geophys Res Lett, 37: L01201
[52]  Stein C, Schmalzl J, Hansen U. 2004. The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection. Phys Earth Planet Inter, 142: 225-255
[53]  Steinbach V, Yuen D A. 1992. The effects of multiple phase-transitions on Venusian mantle convection. Geophys Res Lett, 19: 2243-2246
[54]  Steinbach V, Yuen D A. 1994. Effects of depth-dependent properties on the thermal anomalies produced in flush instabilities from phase-transitions. Phys Earth Planet Inter, 86: 165-183
[55]  Zhong S J. 2006. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature and upper mantle temperature. J Geophys Res, 111: B04409
[56]  Zhong S J, McNamara A, Tan E, et al. 2008. A benchmark study on mantle convection in a 3-D spherical shell using Citcom S. Geochem Geophys Geosyst, 9: Q10017

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133