全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于等效各向异性和流体替换的地下裂缝地震预测方法

DOI: 10.1007/s11430-014-5022-1, PP. 589-600

Keywords: 岩石物理,裂缝,地震反演,各向异性

Full-Text   Cite this paper   Add to My Lib

Abstract:

?地下裂缝是油气聚集和运移的重要通道,而裂缝岩石物理是裂缝参数与地震响应之间联系的桥梁.从裂缝岩石物理出发,探索利用地震数据预测地下裂缝的方法.首先通过构建裂缝岩石物理等效模型,弥补测井横波的缺失,并且实现裂缝岩石物理参数的预测;然后推导了裂缝岩石物理参数与地震响应之间的近似关系式,同时探索裂缝岩石弹性参数和岩石物理参数的地震直接反演方法;最后分别利用测井数据和实际工区地震数据对裂缝岩石物理等效模型的可靠性以及裂缝岩石物理参数直接反演方法的精度进行了验证.结果表明,构建的裂缝岩石物理等效模型可以实现裂缝岩石纵横波速度及岩石物理参数的可靠估测,而且裂缝岩石物理参数地震直接反演方法具有较高的抗噪性,在实际目标工区弹性参数和裂缝岩石物理参数的估算中具有较好的应用结果.

References

[1]  撒利明, 姚逢昌, 狄帮让, 等. 2011. 缝洞型储层地震响应特征与识别方法. 岩性油气藏, 23: 23-28
[2]  唐文榜, 刘来祥, 樊桂芳, 等. 2002. 溶洞充填物判识的频率差异分析技术. 石油与天然气地质, 23: 41-44
[3]  唐晓明. 2011. 含孔隙、裂隙介质弹性波动的统一理论—Biot理论的推广. 中国科学: 地球科学, 41: 784-795
[4]  姚姚, 唐文榜. 2003. 深层碳酸盐岩岩溶风化壳洞缝型油气藏可检测性的理论研究. 石油地球物理勘探, 38: 623-629
[5]  姚姚, 唐文榜, 奚先, 等. 2012. 溶洞型储层数值模拟波场分析与识别方法. 岩性油气藏, 24: 1-6
[6]  杨文采. 1997. 地球物理反演的理论与方法. 北京: 地质出版社
[7]  张广智, 陈怀震, 王琪, 等. 2013. 基于碳酸盐岩裂缝岩石物理模型的横波速度和各向异性参数预测. 地球物理学报, 56: 1707-1715
[8]  Bachrach R, Sengupta M, Salama A, et al. 2009. Reconstruction of the layer anisotropic elastic parameter and high resolution fracture characterization from P-wave data: A case study using seismic inversion and Bayesian rock physics parameter estimation. Geophys Prospect, 57: 253-262
[9]  Bakulin A, Grechka V, Tsvankin I. 2000. Estimation of fracture parameters from reflection seismic data-Part I: HTI model due to a single fracture set. Geophysics, 65: 1788-1802
[10]  Batzle M, Han D H, Castagna J. 1999. Fluids and frequency dependent seismic velocity of rocks. Seg Tech Prog Exp Abs, 18: 5-8
[11]  Batzle M, Han D H, Hofmann R. 2006. Fluid mobility and frequency-dependent seismic velocity—Direct measurements. Geophysics, 71: 1-9
[12]  Gassmann F. 1951. Uber die elastizitat poroser medien. Vierteljahrsschrift Naturforschenden Gesellschaft Zurich, 96: 1-23
[13]  Gurevich B. 2003. Elastic properties of saturated porous rocks with aligned fractures. J Appl Geophys, 54: 203-218
[14]  Hill R. 1952. The elastic behavior of crystalline aggregate. Proc Phys Soc, 65: 349-354
[15]  Huang L, Jiang T, Omoboya B, et al. 2013. Fluid substitution for an HTI medium. Seg Tech Prog Exp Abs, 32: 2659-2663
[16]  Hudson J A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J R Astr Soc, 64: 133-150
[17]  Liu E, Martinez A. 2012. Seismic Fracture Characterization. Netherlands: EAGE Publication
[18]  Mallick S, Craft K L, Meister L J, et al. 1998. Determination of the principal directions of azimuthal anisotropy from P-wave seismic data. Geophysics, 63: 692-706
[19]  Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook. Cambridge: Cambridge University press
[20]  Quintal B, Schmalholz S M, Podladchikov Y. 2010a. Impact of fluid saturation on the reflection coefficient of a poroelastic layer. Seg Tech Prog Exp Abs, 29: 2730-2735
[21]  Quintal B, Steeb H, Frehner M, et al. 2010b. Finite element modeling of seismic attenuation due to fluid flow in partially saturated rocks. Seg Tech Prog Exp Abs, 29: 2564-2569
[22]  Quintal B, Schmalholz S M, Podladchikov Y. 2011. Impact of fluid saturation on the reflection coefficient of a poroelastic layer. Geophysics, 76: 1-12
[23]  Quintal B, Steeb H, Frehner M, et al. 2012. Pore fluid effects on S-wave attenuation caused by wave-induced fluid flow. Geophysics, 77: 13-23
[24]  Ruger A. 1996. Reflection Coefficient and azimuthal AVO analysis in anisotropic media. Doctoral Dissertation. Colorado: Colorado School of Mines
[25]  Ruger A. 1997. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 62: 713-722
[26]  Ruger A. 1998. Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics, 63: 935-947
[27]  Sa L M, Yao F C, Di B R, et al. 2011. Seismic response characteristics and identification method of fracture-cavity reservoir. Lithologic reservoirs, 23: 23-28
[28]  Schoenberg M. 1980. Elastic wave behavior across linear slip interface. J Acoust Soc Am, 68: 1516-1521
[29]  Schoenberg M, Helbig K. 1997. Orthorhombic media: Modeling elastic wave behavior in a vertically fractured Earth. Geophysics, 62: 1954-1974
[30]  Schoenberg M, Muirt F. 1989. A calculus for finely layered anisotropic media. Geophysics, 54: 581-589
[31]  Schoenberg M, Protazio J. 1992. ‘Zoeppritz'' rationalized and generalized to anisotropy. J Seism Explor, 1: 125-144
[32]  Schoenberg M, Sayers C M. 1995. Seismic anisotropy of fractured rock. Geophysics, 60: 204-211
[33]  Thomsen L. 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966
[34]  Wood A W. 1955. A Textbook of Sound. New York: McMillan Co
[35]  Zimmerman R W. 1991. Elastic moduli of a solid containing spherical inclusions. Mech Mater, 12: 17-24
[36]  Biot M A. 1956a. Theory of propagation of elastic waves in a fluid saturated porous solid: A. Low-frequency range. J Acoust Soc Am, 28: 168-179
[37]  Biot M A. 1956b. Theory of propagation of elastic waves in a fluid saturated porous solid: B. Higher frequency range. J Acoust Soc Am, 28: 180-191
[38]  Brown R, Korringa J. 1975. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics, 40: 608-616
[39]  Chapman M. 2009. Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy. Geophysics, 74: D97-D103
[40]  Cheng C H. 1978. Seismic Velocities in Porous Rocks: Direct and Inverse Problems. Doctoral Dissertation. Massachusetts: Massachusetts Institute of Technology
[41]  Cheng C H. 1993. Crack models for a transversely anisotropic medium. J Geophys Res, 98: 675-684
[42]  Downton J. 2005. Seismic Parameter Estimation from AVO Inversion. Doctoral Dissertation. Alberta: University of Calgary
[43]  Downton J, Gray D. 2006. AVAZ parameter uncertainty estimation. Seg Tech Prog Exp Abs, 25: 234-238

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133