[1] | 撒利明, 姚逢昌, 狄帮让, 等. 2011. 缝洞型储层地震响应特征与识别方法. 岩性油气藏, 23: 23-28
|
[2] | 唐文榜, 刘来祥, 樊桂芳, 等. 2002. 溶洞充填物判识的频率差异分析技术. 石油与天然气地质, 23: 41-44
|
[3] | 唐晓明. 2011. 含孔隙、裂隙介质弹性波动的统一理论—Biot理论的推广. 中国科学: 地球科学, 41: 784-795
|
[4] | 姚姚, 唐文榜. 2003. 深层碳酸盐岩岩溶风化壳洞缝型油气藏可检测性的理论研究. 石油地球物理勘探, 38: 623-629
|
[5] | 姚姚, 唐文榜, 奚先, 等. 2012. 溶洞型储层数值模拟波场分析与识别方法. 岩性油气藏, 24: 1-6
|
[6] | 杨文采. 1997. 地球物理反演的理论与方法. 北京: 地质出版社
|
[7] | 张广智, 陈怀震, 王琪, 等. 2013. 基于碳酸盐岩裂缝岩石物理模型的横波速度和各向异性参数预测. 地球物理学报, 56: 1707-1715
|
[8] | Bachrach R, Sengupta M, Salama A, et al. 2009. Reconstruction of the layer anisotropic elastic parameter and high resolution fracture characterization from P-wave data: A case study using seismic inversion and Bayesian rock physics parameter estimation. Geophys Prospect, 57: 253-262
|
[9] | Bakulin A, Grechka V, Tsvankin I. 2000. Estimation of fracture parameters from reflection seismic data-Part I: HTI model due to a single fracture set. Geophysics, 65: 1788-1802
|
[10] | Batzle M, Han D H, Castagna J. 1999. Fluids and frequency dependent seismic velocity of rocks. Seg Tech Prog Exp Abs, 18: 5-8
|
[11] | Batzle M, Han D H, Hofmann R. 2006. Fluid mobility and frequency-dependent seismic velocity—Direct measurements. Geophysics, 71: 1-9
|
[12] | Gassmann F. 1951. Uber die elastizitat poroser medien. Vierteljahrsschrift Naturforschenden Gesellschaft Zurich, 96: 1-23
|
[13] | Gurevich B. 2003. Elastic properties of saturated porous rocks with aligned fractures. J Appl Geophys, 54: 203-218
|
[14] | Hill R. 1952. The elastic behavior of crystalline aggregate. Proc Phys Soc, 65: 349-354
|
[15] | Huang L, Jiang T, Omoboya B, et al. 2013. Fluid substitution for an HTI medium. Seg Tech Prog Exp Abs, 32: 2659-2663
|
[16] | Hudson J A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J R Astr Soc, 64: 133-150
|
[17] | Liu E, Martinez A. 2012. Seismic Fracture Characterization. Netherlands: EAGE Publication
|
[18] | Mallick S, Craft K L, Meister L J, et al. 1998. Determination of the principal directions of azimuthal anisotropy from P-wave seismic data. Geophysics, 63: 692-706
|
[19] | Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook. Cambridge: Cambridge University press
|
[20] | Quintal B, Schmalholz S M, Podladchikov Y. 2010a. Impact of fluid saturation on the reflection coefficient of a poroelastic layer. Seg Tech Prog Exp Abs, 29: 2730-2735
|
[21] | Quintal B, Steeb H, Frehner M, et al. 2010b. Finite element modeling of seismic attenuation due to fluid flow in partially saturated rocks. Seg Tech Prog Exp Abs, 29: 2564-2569
|
[22] | Quintal B, Schmalholz S M, Podladchikov Y. 2011. Impact of fluid saturation on the reflection coefficient of a poroelastic layer. Geophysics, 76: 1-12
|
[23] | Quintal B, Steeb H, Frehner M, et al. 2012. Pore fluid effects on S-wave attenuation caused by wave-induced fluid flow. Geophysics, 77: 13-23
|
[24] | Ruger A. 1996. Reflection Coefficient and azimuthal AVO analysis in anisotropic media. Doctoral Dissertation. Colorado: Colorado School of Mines
|
[25] | Ruger A. 1997. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 62: 713-722
|
[26] | Ruger A. 1998. Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics, 63: 935-947
|
[27] | Sa L M, Yao F C, Di B R, et al. 2011. Seismic response characteristics and identification method of fracture-cavity reservoir. Lithologic reservoirs, 23: 23-28
|
[28] | Schoenberg M. 1980. Elastic wave behavior across linear slip interface. J Acoust Soc Am, 68: 1516-1521
|
[29] | Schoenberg M, Helbig K. 1997. Orthorhombic media: Modeling elastic wave behavior in a vertically fractured Earth. Geophysics, 62: 1954-1974
|
[30] | Schoenberg M, Muirt F. 1989. A calculus for finely layered anisotropic media. Geophysics, 54: 581-589
|
[31] | Schoenberg M, Protazio J. 1992. ‘Zoeppritz'' rationalized and generalized to anisotropy. J Seism Explor, 1: 125-144
|
[32] | Schoenberg M, Sayers C M. 1995. Seismic anisotropy of fractured rock. Geophysics, 60: 204-211
|
[33] | Thomsen L. 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966
|
[34] | Wood A W. 1955. A Textbook of Sound. New York: McMillan Co
|
[35] | Zimmerman R W. 1991. Elastic moduli of a solid containing spherical inclusions. Mech Mater, 12: 17-24
|
[36] | Biot M A. 1956a. Theory of propagation of elastic waves in a fluid saturated porous solid: A. Low-frequency range. J Acoust Soc Am, 28: 168-179
|
[37] | Biot M A. 1956b. Theory of propagation of elastic waves in a fluid saturated porous solid: B. Higher frequency range. J Acoust Soc Am, 28: 180-191
|
[38] | Brown R, Korringa J. 1975. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics, 40: 608-616
|
[39] | Chapman M. 2009. Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy. Geophysics, 74: D97-D103
|
[40] | Cheng C H. 1978. Seismic Velocities in Porous Rocks: Direct and Inverse Problems. Doctoral Dissertation. Massachusetts: Massachusetts Institute of Technology
|
[41] | Cheng C H. 1993. Crack models for a transversely anisotropic medium. J Geophys Res, 98: 675-684
|
[42] | Downton J. 2005. Seismic Parameter Estimation from AVO Inversion. Doctoral Dissertation. Alberta: University of Calgary
|
[43] | Downton J, Gray D. 2006. AVAZ parameter uncertainty estimation. Seg Tech Prog Exp Abs, 25: 234-238
|