全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

提高As污染土壤中As可迁移性含量的功能菌株

DOI: 10.1007/s11430-015-5065-y, PP. 688-694

Keywords: 污染土壤,As形态,可迁移性,活性态含量,功能菌株

Full-Text   Cite this paper   Add to My Lib

Abstract:

?砷(As)污染已成为全球关注的环境问题,中国受As污染的农田和场地土壤面积较大,急需合适的方法进行修复.其中植物修复是受广泛关注的重要方法,但需解决土壤中可迁移性As含量,提高修复效率.为此,在筛选的耐砷菌株基础上,以两株细菌和真菌为供试菌株,在纯培养条件下,单接或联合接种两株细菌B1和B2,两株真菌F1和F2于液体培养基中,加入60Co-γ射线灭菌的含As土壤,研究菌株对砷污染土壤As形态的影响.结果表明,接种菌种均显著增加了土壤中非专性和专性吸附态As的含量,其中4株菌单接种或混合接种增加土壤中非专性态As含量达3~7倍,即显著增加土壤中活性态可迁移性As含量,可利于被植物吸收;接种处理的培养液pH由酸性变为弱碱性,并与非专性吸附态As和专性吸附态As含量显著相关.此外,筛选出的两株细菌、两株真菌都能产生IAA,有利于植物修复As污染土壤时吸收As的同时增强其存活能力,可应用于微生物-植物联合修复As污染土壤工程中.

References

[1]  Wenzel W W, Brandstetter A, Wutte H, et al. 2002. Arsenic in field-collected soil solutions and extracts of contaminated soils and its implication to soil standards. J Plant Nutr Soil Sci, 165: 221-228
[2]  东秀珠, 蔡妙芬. 2001. 常用细菌鉴定手册. 北京: 科学出版社. 43-65
[3]  李引, 虞丽, 李辉信, 等. 2012. 一株花生根际促生菌的筛选鉴定及其特性研究. 生态与农村环境学报, 28: 416-421
[4]  马杰, 韩永和, 周小勇, 等. 2012. 不同浸提方法对土壤及蜈蚣草中砷形态浸提效果. 现代仪器, 18: 16-19
[5]  潘瑞炽. 2003. 植物生理学. 第4版. 北京: 高等教育出版社. 33-42
[6]  魏景超. 1979. 真菌鉴定手册. 上海: 上海科学技术出版社. 493-494, 609-615
[7]  赵根成, 廖晓勇, 闫秀兰, 等. 2010. 微生物强化蜈蚣草累积土壤砷能力的研究. 环境科学, 31: 431-436
[8]  中国科学院南京土壤研究所微生物室. 1985. 土壤微生物研究法. 北京: 科学出版社. 40-59
[9]  Belimov A A, Hontzeas N, Safronova V I, et al. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem, 37: 241-250
[10]  Brows M E. 1972. Plant growth substances produced by micro-organisms of soil and rhizosphere. J Appl Bacteriol, 35: 443-451
[11]  Burd G I, Dixon D G, Glick B R. 1998. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol, 64: 3663-3668
[12]  Burd G I, Dixon D G, Glick B R. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol, 46: 237-245
[13]  Cantafio A W, Hagen K D, Lewis G E. 1996. Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Appl Environ Microbiol, 62: 3298-3303
[14]  Egamberdiyeva D, Hflich G. 2004. Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semiarid region of Uzbekistan. J Arid Environ, 56: 293-301
[15]  Francis A J, Dodge C J. 1988. Anaerobic microbial dissolution of transition and heavy metal oxdides. Appl Environ Microbiol, 54: 1009-1014
[16]  Gadd G M. 1999. Fungal production of citric and oxalic acid: Importance in metal physiology and biogeochemical processes. Adv Microb Physiol, 41: 47-92
[17]  Gihring T M, Druschel G K, Mccleskey R B, et al. 2001. Rapid arsenite oxidation by Thermus aquaTicus and Thermus thermophilus: Field and laboratory investigations. Environ Sci Technol, 35: 3857-3862
[18]  Grichko V P, Filby B, Glick B R. 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. J Biotechnol, 81: 45-53
[19]  Hudson-Edwards K A, Houghton S L, Osborn A. 2004. Extraction and analysis of arsenic in soils and sediments. Trac-Trend Anal Chem, 23: 745-752
[20]  Idris R, Trifonova R, Puschenreiter M, et al. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol, 70: 2667-2677
[21]  Kalinowski B E, Liermann L J, Brantley S L. 2000. X-ray photoelectron evidence for bacteria- enhanced dissolution of hornblende. Geochim Cosmochim Acta, 107: 225-231
[22]  Keon N E, Swartz H, Bradbander D J, et al. 2001. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ Sci Technol, 35: 2778-2784
[23]  Meharg A A, Hartley-Whitaker J. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol, 154: 29-43
[24]  Nies L, Shah S, Rashid A, et al. 2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Bioch, 40: 355-361
[25]  Rhine D E, Garcia-Dominguez E, Phelps C, et al. 2005. Environmental microbes can speciate and cycle arsenic. Environ Sci Technol, 39: 9569-9573
[26]  Rutherford D W, Bednar A J, Garbarino J R, et al. 2003. Environmental fate of roxarsone in poultry, part II. mobility of arsenic in soils amended with poultry litter. Environ Sci Technol, 37: 1515-1520
[27]  Van H S, Swennen R, Vandecasteele C, et al. 2003. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environ Pollut, 122:323-342
[28]  Vivas A, Biró B, Ruíz-Lozano J M, et al. 2006. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere, 62: 1523-1533
[29]  Wenzel W W, Kirchbaumer N, Prohaska T, et al. 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta, 436: 309-323
[30]  Yang J K, Barnett M O, Jardine P M, et al. 2002. Adsorption, sequestration, and bioaccessibility of As(V) in soils. Environ Sci Technol, 36: 4562-4569

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133