Wenzel W W, Brandstetter A, Wutte H, et al. 2002. Arsenic in field-collected soil solutions and extracts of contaminated soils and its implication to soil standards. J Plant Nutr Soil Sci, 165: 221-228
Belimov A A, Hontzeas N, Safronova V I, et al. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem, 37: 241-250
[10]
Brows M E. 1972. Plant growth substances produced by micro-organisms of soil and rhizosphere. J Appl Bacteriol, 35: 443-451
[11]
Burd G I, Dixon D G, Glick B R. 1998. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol, 64: 3663-3668
[12]
Burd G I, Dixon D G, Glick B R. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol, 46: 237-245
[13]
Cantafio A W, Hagen K D, Lewis G E. 1996. Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Appl Environ Microbiol, 62: 3298-3303
[14]
Egamberdiyeva D, Hflich G. 2004. Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semiarid region of Uzbekistan. J Arid Environ, 56: 293-301
[15]
Francis A J, Dodge C J. 1988. Anaerobic microbial dissolution of transition and heavy metal oxdides. Appl Environ Microbiol, 54: 1009-1014
[16]
Gadd G M. 1999. Fungal production of citric and oxalic acid: Importance in metal physiology and biogeochemical processes. Adv Microb Physiol, 41: 47-92
[17]
Gihring T M, Druschel G K, Mccleskey R B, et al. 2001. Rapid arsenite oxidation by Thermus aquaTicus and Thermus thermophilus: Field and laboratory investigations. Environ Sci Technol, 35: 3857-3862
[18]
Grichko V P, Filby B, Glick B R. 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. J Biotechnol, 81: 45-53
[19]
Hudson-Edwards K A, Houghton S L, Osborn A. 2004. Extraction and analysis of arsenic in soils and sediments. Trac-Trend Anal Chem, 23: 745-752
[20]
Idris R, Trifonova R, Puschenreiter M, et al. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol, 70: 2667-2677
[21]
Kalinowski B E, Liermann L J, Brantley S L. 2000. X-ray photoelectron evidence for bacteria- enhanced dissolution of hornblende. Geochim Cosmochim Acta, 107: 225-231
[22]
Keon N E, Swartz H, Bradbander D J, et al. 2001. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ Sci Technol, 35: 2778-2784
[23]
Meharg A A, Hartley-Whitaker J. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol, 154: 29-43
[24]
Nies L, Shah S, Rashid A, et al. 2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Bioch, 40: 355-361
[25]
Rhine D E, Garcia-Dominguez E, Phelps C, et al. 2005. Environmental microbes can speciate and cycle arsenic. Environ Sci Technol, 39: 9569-9573
[26]
Rutherford D W, Bednar A J, Garbarino J R, et al. 2003. Environmental fate of roxarsone in poultry, part II. mobility of arsenic in soils amended with poultry litter. Environ Sci Technol, 37: 1515-1520
[27]
Van H S, Swennen R, Vandecasteele C, et al. 2003. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environ Pollut, 122:323-342
[28]
Vivas A, Biró B, Ruíz-Lozano J M, et al. 2006. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere, 62: 1523-1533
[29]
Wenzel W W, Kirchbaumer N, Prohaska T, et al. 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta, 436: 309-323
[30]
Yang J K, Barnett M O, Jardine P M, et al. 2002. Adsorption, sequestration, and bioaccessibility of As(V) in soils. Environ Sci Technol, 36: 4562-4569