全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复杂下垫面地表土壤热通量算法改进:以黑河流域为例

, PP. 494-507

Keywords: 地表土壤热通量,土壤含冰量,地表能量平衡,复杂下垫面

Full-Text   Cite this paper   Add to My Lib

Abstract:

?地表土壤热通量是地表能量平衡的重要组成部分,对地表蒸散发的估算至关重要.利用土壤温湿度廓线观测资料基于热扩散方程计算地表土壤热通量,并通过冻土融化前后土壤液态水含量变化估算土壤含冰量,分析了土壤含冰量对土壤热通量的影响,旨在分析黑河流域典型下垫面(高山草地、农田和森林)地表土壤热通量的时空变化特征.研究结果表明:(1)黑河流域不同下垫面的地表土壤热通量有明显的日变化差异,日最大值时刻提前净辐射通量几分钟至几小时不等,这与土壤质地、湿度、热属性和植被覆盖度有关;(2)净辐射通量有显著的季节变化,一般夏季达最大值,冬季最小,地表土壤热通量也有明显的季节变化,但并不总是与净辐射通量变化保持一致,春季达最大值,夏季由于植被覆盖的原因反而降低;(3)地表土壤热通量占净辐射通量的比例因季节及下垫面不同而有差异,1月份月平均比值分别为:阿柔25.6%、盈科22.9%和关滩4.3%,7月份月平均比值分别为:阿柔2.3%、盈科1.6%和关滩0.3%;(4)冬季考虑了冰的热容量使得土壤热容量增加,土壤热存储增加,从而由热扩散方程计算的地表土壤热通量增加,使得能量平衡闭合率提高了4.3%.

References

[1]  胡隐樵, 高由禧, 王介民, 等. 1994. 黑河试验(HEIFE)的一些研究成果. 高原气象, 13: 225-236
[2]  李新, 马明国, 王建, 等. 2008. 黑河流域遥感-地面观测同步试验: 科学目标与试验方案. 地球科学进展, 23: 897-914
[3]  李超, 段廷扬, 陈隆勋, 等. 1999. 青藏高原土壤热交换的计算方案及初步分析. 成都气象学院学报, 14: 129-138
[4]  Moran M S, Kustas W P, Vidal A, et al. 1994. Use of ground-based remotely sensed data for surface energy balance evaluation of a semiarid rangeland. Water Resour Res, 30: 1339-1349
[5]  Morse A, Allen R G, Tasumi M, et al. 2001. Application of the SEBAL methodology for estimating evapotranspiration and consumptive use of water through remote sensing. Technical Report. Idaho: University of Idaho
[6]  Murray T, Verhoef A. 2007. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements II. Diunal shape of soil heat flux. Agric For Meteorol, 147: 88-97
[7]  Oleson W K, Dai Y J, Bonan G, et al. 2004. Technical Description of the Community Land Model (CLM). Technical Report. National Center for Atmospheric Research
[8]  Payero J O, Neale C M U, Wright J L. 2005. Estimating soil heat flux for alfalfa and clipped tall fescue grass. Appl Eng Agric, 21: 401-409
[9]  Reginato R J, Jackson R D, Pinter P J. 1985. Evapotranspiration calculated from remote multispectral and ground station meteorological data. Remote Sens Environ, 1: 75-89
[10]  Reicosky D C, Brown P W, Moran M S. 1994. Diurnal trends in wheat canopy temperature, photosynthesis and evapotranspiration. Remote Sens Environ, 49: 235-245
[11]  Santanello J R A J, Friedl A M. 2003. Diurnal covariation in soil heat flux and net radiation. J Appl Meteorol, 42: 851-862
[12]  Sellers P J, Randall D A, Collatz G J, et al. 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J Clim, 9: 676-705
[13]  Su Z B. 2002. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci, 6: 85-99
[14]  Tanaka K, Ishikawa H, Hayashi T, et al. 2001. Surface energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data. J Meteorol Soc Jpn, 79: 505-517
[15]  Wang G Y, Huang J P, Guo W D, et al. 2010. Observation analysis of land-atmosphere interactions over the Loess Plateau of northwest China. J Geophys Res, 115: D00K17, doi: 10.1029/2009JD013372
[16]  Wang J M, Gao Y X, Hu Y Q, et al. 1993. An overview of the HEIFE experiment in the People''s Republic of China. Exchange processes at the land surface for a range of space and time scales. IAHS Publ, 212: 397-403
[17]  Wilson K, Goldstein A, Falge E, et al. 2002. Energy balance closure at FLUXNET sites. Agric For Meteorol, 113: 223-243
[18]  Xin X Z, Liu Q H. 2010. The two-layer surface energy balance parameterization scheme (TSEBPS) for estimation of land surface heat fluxes. Hydrol Earth Syst Sci, 14: 491-504
[19]  王介民, 王维真, 刘绍民, 等. 2009. 近地层能量平衡闭合问题——综述及个例分析. 地球科学进展, 24: 705-713
[20]  王维真, 徐自为, 刘绍民, 等. 2009. 黑河流域不同下垫面水热通量特征分析. 地球科学进展, 24: 714-723
[21]  徐自为, 刘绍民, 徐同仁, 等. 2013. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究. 地球学进展, 28: 875-889
[22]  阳坤, 王介民. 2008. 一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法. 中国科学D辑: 地球科学, 38: 243-250
[23]  杨红娟. 2009. 遥感腾发模型研究及其在干旱区平原绿洲的应用. 博士学位论文. 北京: 清华大学. 20-24
[24]  左金清, 王介民, 黄建平, 等. 2010. 半干旱草地地表土壤热通量的计算及其对能量平衡的影响. 高原气象, 29: 840-848
[25]  Allen R G, Pruitt W O, Businger J A, et al. 1996. Evaporation and Transpiration. Technical Report. ASCE Hydrology Handbook. New York: American Society of Civil Engineerw. 125-252
[26]  Anandakumar K, Venkatesan R, Prabha T V. 2001. Soil thermal properties at Kalpakkam in coastal south India. Pro. Indian Acad Sci (Earth Planet Sci), 110: 239-245
[27]  Bastiaanssen W G M, Cheema M J M, Immerzeel W W, et al. 2012. Surface energy balance and actural evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model. Water Resour Res, 48: W11512, doi: 10.1029/2011WR010482
[28]  Bhumralkar C M. 1975. Numerical experiments on the computation of ground temperature in an atmospheric general circulation model. J Appl Meteorol, 14: 1246-1258
[29]  Camuffo D, Adriana B. 1982. An observational study of heat fluxes and their relationships with net radiation. Bound-Layer Meteor, 23: 359-368
[30]  Cellier P, Richard G, Robin P. 1996. Partition of sensible heat fluxes into bare soil and the atmosphere. Agric For Meteorol, 82: 245-265
[31]  Choudhury B J. 1989. Estimating evaporation and carbon assimilation using infrared temperature data: Vistas in modeling. In: Asrar G, ed. Theory and Applications of Optical Remote Sensing. New York: Wiley. 628-690
[32]  Clothier B E, Clawson K L, Pinter P J, et al. 1986. Estimation of soil heat flux from net radiation during the growth of alfalfa. Agric For Meteorol, 37: 319-329
[33]  Culf A D, Foken T, Gash J H C. 2004. The energy balance closure problem. In: Kabat P, Claussen M, Dirmeyer P A, et al., eds. Vegetation, Water, Humans and The Climate. A New Perspective on an Interactive System. Heidelberg: Springer. 159-166
[34]  Dai Y J, Zeng X B, Dickinson E R. 2001. Common Land Model (CoLM). Technical Report. National Center for Atmospheric Research
[35]  de Vries D A. 1963. Thermal Properties of Soils. Amsterdam: North-Holland
[36]  Farouki O T. 1981. The thermal properties of soils in cold regions. Cold Reg Sci Technol, 5: 67-75
[37]  Friedl M A. 1996. Relationships among remotely sensed data, surface energy balance, and area-averaged fluxes over partially vegetated land surface. J Appl Meteorol, 35: 2091-2103
[38]  Fuchs M, Hadas A. 1972. The heat flux density in a non-homogeneous bare Loessial soil. Bound-Layer Meteor, 3: 191-200
[39]  Gao Z Q, Horton R, Liu H P, et al. 2009. Influence of wave phase difference between surface soil heat flux and soil surface temperature on land surface energy balance closure. Hydrol Earth Syst Sci, 6: 1089-1110
[40]  Gao Z Q, Horton R, Liu H P. 2010. Impact of wave phase difference between soil surface heat flux and soil surface temperature on soil surface energy balance closure. J Geophys Res, 115: D16112, doi: 10.1029/2009JD013278.
[41]  Hsieh Cheng-I, Huang Cheng W, Ger K. 2009. Long-term estimation of soil heat flux by single layer soil temperature. Int J Biometeorol, 53: 113-123
[42]  Idso S B, Aase J K, Jackson R D. 1975. Net radiation-soil heat flux relations as influenced by soil water content variations. Bound-Layer Meteor, 9: 113-122
[43]  Jackson R D, Moran M S, Gay L W, et al. 1987. Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data. Irrigation Sci, 8: 81-90
[44]  Kustas W P, Daughtry S T C. 1990. Estimation of the soil heat flux/net radiation ratio from spectral data. Agric For Meteorol, 49: 205-223
[45]  Kustas W P, Daughtry S T C, Oevelen J V P. 1993. Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices. Remote Sens Environ, 46: 319-330
[46]  Kustas W P, Prueger H J, Hatfield L J, et al. 2000. Variability in soil heat flux from a mesquite dune site. Agric For Meteorol, 103: 249-264
[47]  Kustas W P, Zhan X, Schmugge T J. 1998. Combining optical and microwave remote sensing for mapping energy fluxes in a semiarid watershed. Remote Sens Environ, 64: 116-131
[48]  Li X, Cheng G D, Liu S M, et al. 2013. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bull Amer Meteorol Soc, 94: 1145-1160
[49]  Li X, Li X W, Li Z Y, et al. 2009. Watershed allied telemetry experimental research. J Geophys Res, 114: D22103, doi: 10.1029/2008JD011590
[50]  Li X, Li X W, Roth K, et al. 2011. Preface "observing and modeling the catchment scale water cycle". Hydrol Earth Syst Sci, 15: 597-601
[51]  Liebethal C, Huwe B, Foken T. 2005. Sensitivity analysis for two ground heat flux calculation approaches. Agric For Meteorol, 132: 253-262
[52]  Liebethal C, Foken T. 2007. Evaluation of six parameterization approaches for the ground heat flux. Theor Appl Climatol, 88: 43-56
[53]  Liu S M, Xu Z W, Wang W Z, et al. 2010. Measurements of energy and water vapor fluxes over different surfaces in the Heihe River Basin, China. Hydrol Earth Syst Sci, 7: 8741-8780
[54]  Liu S M, Xu Z W, Wang W Z, et al. 2011. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol Earth Syst Sci, 15: 1291-1306
[55]  Lu S, Ren T, Gong Y, et al. 2007. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J, 71: 8-14
[56]  Ma W Q, Ma Y M, Hu Z, et al. 2011. Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery. Hydrol Earth Syst Sci, 15: 1403-1413
[57]  Ma Y M, Tsukamoto O, Ishikawa H. 2002. Determination of regional land surface heat flux densities over heterogeneous landscape of HEIFE integrating satellite remote sensing with field observation. J Meteorol Soc Jpn, 80: 485-501
[58]  Ma Y M, Tsukamoto O, Menenti M, et al. 2003. Regionalization of surface fluxes over heterogeneous landscape of the Tibetan Plateau by using satellite remote sensing data. J Meteorol Soc Jpn, 81: 277-293
[59]  Ma Y M. 2003. Remote sensing parameterization of regional net radiation over heterogeneous land surface of Tibetan Plateau and arid area. Int J Remote Sens, 24: 3137-3148
[60]  Moran M S, Jackson R D, Raymond L H, et al. 1989. Mapping surface energy balance components by combining landsat thematic mapper and ground-based meteorological data. Remote Sens Environ, 30: 77-87

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133