全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

现代气候条件下降水变化的“西风模态”空间范围及其影响因子初探

, PP. 379-388

Keywords: "西风模态核心区",空间范围,年代际-年际,大西洋多年代际振荡,(AMO),印度夏季风降水(ISMP)

Full-Text   Cite this paper   Add to My Lib

Abstract:

?全新世轨道-千年-百年-年代际尺度上中纬度亚洲内陆干旱区的湿度/降水变化与东亚季风区呈现出错/反位相的变化,简称为中纬度内陆干旱区气候变化的"西风模态",但至今对气候变化"西风模态"的适用空间范围及其影响因子缺乏深入研究.针对整个中纬度欧亚大陆(30°~60°N,0°~130°E),使用1960~2010年GPCC,CRU和CPC三个降水数据集的逐月降水资料,分别对冬、夏季降水的年际、年代际信号进行EOF分析,发现现代气候背景下的降水变化"西风模态"在夏季年代际尺度表现最为显著,亚洲中部内陆干旱区部分区域的年代际夏季降水与其东部的中纬度东亚季风区和西部的地中海周边地区均呈现出相反变化的空间格局,在中纬度欧亚大陆表现出"-+-"的空间变化模态.据此划分出气候变化"西风模态"核心区域,即西部以里海(约50°E)为界,东部到河西走廊西界(约90°E),南北界限与亚洲中部干旱区南北界线吻合(约36°~54°N),整体相当于中亚和中国新疆干旱区,本文将其命名为"西风模态核心区".依据逐月NCEP/NCAR再分析数据,探讨了亚洲中部干旱区气候变化"西风模态"的成因,发现其不但与中纬度大气环流的纬向波动传播及印度夏季风降水异常之间的共同作用有直接联系,而且与大西洋多年代际振荡(AMO)也密切相关.

References

[1]  Shen J, Liu X Q, Wang S M, et al. 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18000 years. Quat Int, 136: 131-140
[2]  Shi Y F, Shen Y P, Kang E, et al. 2007. Recent and future climate change in Northwest China. Clim Chang, 80: 379-393
[3]  Uno I, Eguchi K, Yumimoto K, et al. 2009. Asian dust transported one full circuit around the globe. Nat Geosci, 2: 557-560
[4]  Wang H, Wang B, Huang F, et al. 2012. Interdecadal change of the boreal summer circumglobal teleconnection (1958-2010). Geophys Res Lett, 39: L12704
[5]  Wang H J. 2001. The weakening of the Asian Monsoon circulation after the end of 1970''s. Adv Atmos Sci, 18: 376-386
[6]  Wang H J, Chen H P. 2012. Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon? J Geophys Res, 117: D12109
[7]  Wang W, Feng Z D. 2013. Spatial variations of effective moisture during the megathermal mid-Holocene in the East Asian arid and semiarid regions. Earth-Sci Rev, 122: 38-57
[8]  Wang Y, Cheng H, Edwards R L, et al. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308: 854-857
[9]  Xiao J L, Xu Q H, Nakamura T, et al. 2004. Holocene vegetation variation in the Daihai Lake region of north-central China: A direct indication of the Asian monsoon climatic history. Quat Sci Rev, 23: 1669-1679
[10]  Yao T D, Thompson L, Yang W, et al. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang, 2: 663-667
[11]  Zhou T J, Yu R C. 2005. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J Geophys Res, 110: D08104
[12]  陈发虎, 陈建徽, 黄伟. 2009. 中纬度亚洲现代间冰期气候变化的"西风模式"讨论. 地学前缘, 16: 23-32
[13]  陈发虎, 黄伟, 靳立亚, 等. 2011. 全球变暖背景下中亚干旱区降水变化特征及其空间差异. 中国科学: 地球科学, 41: 1647-1657
[14]  陈活泼, 孙建奇, 范可. 2012. 新疆夏季降水年代际转型的归因分析. 地球物理学报, 55: 1844-1851
[15]  段克勤, 姚檀栋, 王宁练, 等. 2008. 青藏高原南北降水变化差异研究. 冰川冻土, 30: 726-732
[16]  韩淑媞, 吴乃锜, 李志中. 1993. 晚更新世晚期北疆内陆型气候环境变迁. 地理研究, 12: 47-54
[17]  姜大膀, 苏明峰, 魏荣庆, 等. 2009. 新疆气候的干湿变化及其趋势预估.大气科学, 33: 90-98
[18]  李吉均. 1990. 中国西北地区晚更新世以来环境变迁模式. 第四纪研究, 3: 197-204
[19]  马柱国, 符淙斌. 2006. 1951~2004年中国北方干旱化的基本事实. 科学通报, 51: 2429-2439
[20]  杨莲梅, 张庆云. 2008. 北大西洋涛动对新疆夏季降水异常的影响. 大气科学, 32: 1187-1196
[21]  周秀骥, 赵平, 刘舸, 等. 2011. 中世纪暖期、小冰期与现代东亚夏季风环流和降水年代-百年尺度变化特征分析. 科学通报, 56: 2060-2067
[22]  Becker A, Finger P, Meyer-Christoffer A, et al. 2013. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst Sci Data, 5: 71-99
[23]  Chen F H, Yu Z C, Yang M L, et al. 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27: 351-364
[24]  Chen F H, Chen J H, Holmes J, et al. 2010. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat Sci Rev, 29: 1055-1068
[25]  Chen G S, Huang R H. 2012. Excitation mechanisms of the teleconnection patterns affecting the july precipitation in northwest china. J Clim, 25: 7834-7851
[26]  Chen J H, Chen F H, Feng S, et al. 2015. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and little ice age: Spatial patterns and possible mechanisms. Quat Sci Rev, 107: 98-111
[27]  Chen M Y, Xie P P, Janowiak J E, et al. 2002. Global land precipitation: A 50-yr monthly analysis based on gauge observations. J Hydrometeorol, 3: 249-266
[28]  Ding Q H, Wang B. 2005. Circumglobal teleconnection in the Northern Hemisphere summer. J Clim, 18: 3483-3505
[29]  Ding Q H, Wang B, Wallace J M, et al. 2011. Tropical-extratropical teleconnections in boreal summer: Observed interannual variability. J Clim, 24: 1878-1896
[30]  Duchon C E. 1979. Lanczos filtering in one and two dimensions. J Appl Meteorol Clim, 18: 1016-1022
[31]  Enomoto T, Hoskins B J. Matsuda Y. 2003. The formation mechanism of the Bonin high in August. Q J R Meteorol Soc, 129: 157-178
[32]  Fang K Y, Davi N, Gou X H, et al. 2010. Spatial drought reconstructions for central High Asia based on tree rings. Clim Dyn, 35: 941-951
[33]  Feng S, Hu Q, Qian W H. 2004. Quality control of daily meteorological data in China 1951-2000: A new dataset. Int J Climatol, 24: 853-870
[34]  Feng S, Hu Q. 2008. How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys Res Lett, 35: L01707
[35]  Feng S, Hu Q, Huang W, et al. 2014. Projected climate shift under future global warming from multi-model, multi-scenario, CMIP5 simulations. Glob Planet Change, 112: 41-52
[36]  Harris I, Jones P D, Osborn T J, et al. 2014. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. Int J Climatol, 34: 623-642
[37]  Huang W, Chen F H, Feng S, et al. 2013. Interannual precipitation variations in the mid-latitude Asia and their association with large scale atmospheric circulation. Chin Sci Bull, 58: 3963-3968
[38]  Huang W, Feng S, Chen J H, et al. 2015. Physical mechanisms of the summer precipitation variations in the Tarim Basin, Northwestern China. J Clim, doi: 10.1175/JCLI-D-14-00395.1
[39]  Jin L Y, Chen F H, Morrill C, et al. 2012. Causes of early Holocene desertification in arid central Asia. Clim Dyn, 38: 1577-1591
[40]  Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc, 77: 437-472
[41]  Liang E Y, Shao X M, Kong Z C, et al. 2003. The extreme drought in the 1920s and its effect on tree growth deduced from tree ring analysis: A case study in North China. Ann Forest Sci, 60: 145-152
[42]  Liu Z Y, Wen X Y, Brady E C, et al. 2014. Chinese cave records and the East Asia summer monsoon. Quat Sci Rev, 83: 115-128
[43]  Liu J P, Curry J A, Wang H J, et al. 2012. Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci USA, 109: 4074-4079
[44]  Lorenz E N. 1956. Empirical orthogonal function and statistical weather prediction. Scientific Report No. 1 Statist Forecasting Project. Department of Meteorology, Massachusetts Institute of Technology
[45]  Lu R Y, Oh J H, Kim B J. 2002. A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A: 44-55

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133