全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

夏季青藏高原及其周边地区卫星MLS水汽、臭氧产品的探空检验分析

, PP. 335-350

Keywords: MLS廓线产品,探空观测,水汽,臭氧,青藏高原

Full-Text   Cite this paper   Add to My Lib

Abstract:

?根据Aura卫星微波临边探测(MLS)2.2,3.3版水汽和臭氧廓线,采用线性内插方法,将夏季在青藏高原(西藏的那曲和拉萨)及其周边地区(云南腾冲)通过冷冻霜点仪(CFH)和电化学反应池型(ECC)探空仪分别测得的水汽和臭氧数据插值到与卫星产品规定的气压高度进行比较分析,以检验MLS水汽和臭氧廓线产品.结果表明:MLS2.2和3.3版水汽相对误差在100hPa的对流层顶附近分别为(9.8±46.0)%(n=18),(23.0±45.8)%(n=17);在小于并包含82.5hPa在内的下平流层则分别为(-2.2±15.7)%(n=74),(0.3±14.9)%(n=75);而在对流层316~121hPa高度则分别为(21.5±90.6)%(n=104),(6.0±83.4)%(n=99).相应MLS2.2,3.3版臭氧的误差分别为:(-3.5±54.4)%(n=27),(-8.7±41.6)%(n=38)(100hPa);(-11.7±16.3)%(n=135),(15.6±24.2)%(n=305)(下平流层);(18.0±79.1)%(n=47),(34.2±76.6)%(n=160)(对流层上层).MLS水汽和臭氧的误差垂直分布在对流层上层-平流层低层振荡和离散分布明显,部分误差可能由于此高度层水汽和臭氧浓度梯度大和比较用线性插值探空数据引起.“臭氧低谷”期间,拉萨地区70hPa高度以下MLS卫星臭氧浓度误差明显增加;腾冲、那曲与拉萨三地的MLS臭氧误差的垂直分布特征较一致.卫星产品与探空测值的初步关系表明,MLS廓线的灵敏度与水汽和臭氧在大气中垂直分布有密切联系,3.3版水汽产品的灵敏度在82.5hPa以上高度略有提高,臭氧产品灵敏度没有明显变化.文中还讨论了导致MLS水汽和臭氧廓线产品误差的可能因素.

References

[1]  毕云, 陈月娟, 周任君,等. 2008. 青藏高原上空H2O和CH4的分布和变化趋势分析. 高原气象, 27: 249-258
[2]  陈月娟, 施春华. 2005. 从HALOE资料看青藏高原上空HCl分布及其与O3的关系. 高原气象, 24: 1-8
[3]  颜晓露, 郑向东, 李蔚, 等. 2012. 两种探空仪观测湿度垂直分布及其应用比较. 应用气象学报, 23: 433-440
[4]  郑向东, 汤洁, 周秀骥, 等. 2000. 拉萨地区1998年夏季臭氧总量及垂直廓线的观测研究. 应用气象学报, 11: 173-179
[5]  周秀骥, 罗超, 李维亮, 等. 1995. 中国地区臭氧总量变化与青藏高原低值中心. 科学通报, 40: 1396-1398
[6]  Ahmad S P, Waters J W, Johnson J E, et al. 2006. Atmospheric composition data products from the EOS Aura MLS. Eighth Conference on Atmospheric Chemistry, P1.8
[7]  Berthet G, Renard J B, Ghysels M, et al. 2013. Balloon-borne observations of mid-latitude stratospheric water vapour: Comparisons with HALOE and MLS satellite data. J Atmos Chem 70: 197-219
[8]  Bian J, Gettelman A, Chen H, et al. 2007. Validation of satellite ozone profile retrievals using Beijing ozonesonde data. J Geophys Res, 112: D06305, doi: 10.1029/2006JD007502
[9]  Feng L, Brugge R, Hólm E V, et al. 2008. Four-dimensional variational assimilation of ozone profiles from the Microwave Limb Sounder on the Aura satellite. J Geophys Res, 113, doi: 10.1029/2007JD009121
[10]  Froidevaux L, Livesey N J, Read W G, et al. 2006. Early validation analyses of atmospheric profiles from EOS MLS on the Aura satellite. IEEE Trans Geosci Remote Sensing, 44: 1106-1121
[11]  Fu R, Hu Y, Wright J S, et al. 2006. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc Natl Acad Sci USA, 103: 5664-5669
[12]  Gettelman A, Kinnison D E, Dunkerton T J, et al. 2004. Impact of monsoon circulations on the upper troposphere and low stratosphere. J Geophys Res, 109: D22101, doi: 10.1029/2004JD004878
[13]  Hurst D F, Oltmans S J, V?mel H, et al. 2011. Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record. J Geophys Res, 116, doi: 10.1029/2010JD015065
[14]  Jiang Y B, Froidevaux L, Lambert A, et al. 2007. Validation of Aura Microwave Limb Sounder ozone by ozonesonde and lidar measurements. J Geophys Res, 112, doi: 10.1029/2007JD008776
[15]  Komhyr W D, Barnes R A, Brothers G B, et al. 1995. Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989. J Geophys Res, 100: 9231-9244
[16]  Liu X, Bhartia P K, Chance K, et al. 2010. Validation of Ozone Monitoring Instrument (OMI) ozone profiles and stratospheric ozone columns with Microwave Limb Sounder(MLS) measurements. Atmos Chem Phys, 10: 2539-2549
[17]  Livesey N J, Read W G, Froidevaux L, et al. 2011. Version 3.3 Level 2 data quality and description document. JPL D-33509
[18]  Livesey N J, Snyder W V, Read W G, et al. 2006. Retrieval algorithms for the EOS Microwave Limb Sounder (MLS). IEEE Trans Geosci Remote Sensing, 44: 1144-1155
[19]  McPeters R D, Labow G J, Logan J A. 2007. Ozone climatological profiles for satellite retrieval algorithms. J Geophys Res, 112, doi: 10.1029/2005JD006823
[20]  Randel W J, Park M, Emmons L, et al. 2010. Asian monsoon transport of pollution to the stratosphere. Science, 328: 611-613
[21]  Pan L L, Paulik L C, Honomichl S B, et al. 2014. Identification of the tropical tropopause transition layer using the ozone-water vapor relationship. J Geophys Res, doi: 10.1002/2013JD020558
[22]  Smit H G J, Straeter W, Johnson B J, et al. 2007. Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE). J Geophys Res, 112: D19306, doi:10.1029/2006JD007308
[23]  Solomon S, Rosenlof K H, Portmann R W, et al. 2010. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327: 1219-1223
[24]  Thornton D C, Niazy N, 1982. Sources of background current in the ECC-ozonesonde: Implication for total ozone measurements. J Geophys Res, 87: 8943-8950.
[25]  V?mel H, David D E, Smith K. 2007a. Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J Geophys Res, 112, doi: 10.1029/2006JD007224
[26]  V?mel H, Barnes J E, Forno R, et al. 2007b. Validation of Aura Microwave Limb Sounder water vapor by balloon-borne Cryogenic Frost point Hygrometer measurements. J Geophys Res, 112, doi: 10.1029/2007JD008698
[27]  Waters J W, Read W G, Froidevaux L, et al. 1999. The UARS and EOS Microwave Limb Sounder (MLS) experiments. J Atmos Sci, 56: 194-217
[28]  Waters J W, Froidevaux L, Harwood R S, et al. 2006. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans Geosci Remote Sensing, 44: 1075-1092
[29]  Xu X, Lu C, Shi X, et al. 2008. World water tower: An atmospheric perspective. Geophys Res Lett, 35, doi: 10.1029/ 2008GL03586

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133