全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

东沙海底峡谷的地貌沉积特征及成因

, PP. 275-289

Keywords: 东沙海底峡谷,多波束海底地貌,地震层序,地震相,沉积要素,南海

Full-Text   Cite this paper   Add to My Lib

Abstract:

?东沙海底峡谷是南海东北部峡谷群中最西边的一条大型峡谷,其研究对于深入理解晚新生代南海东北部峡谷群的成因、沉积输移机理、台西南前陆盆地及台湾造山带的演化等具有重要意义.综合利用多道反射地震和多波束海底测深数据,研究东沙海底峡谷的地貌、沉积特征及成因.结果表明,东沙海底峡谷是一条陆坡限定型峡谷,它发源于东沙群岛东部上陆坡区,自NWW往SEE方向于水深3000m处汇入台湾浅滩南峡谷,全长约190km,平均宽度10km.根据地震层序分析,在峡谷充填沉积物中识别出了11个层序界面,解释为峡谷的古下切侵蚀面.地震相分析表明,该峡谷及有关沉积主要表现为平行上超充填、杂乱充填、丘状发散和迁移波状等地震相类型,分别解释为浊流或其他重力流沉积与半远洋沉积的交互、滑坡或碎屑流及峡谷底部滞留沉积、浊流溢流形成的天然堤,以及发育于天然堤或峡谷口外海底扇上的沉积波.ODP1144孔合成记录层位标定表明,东沙海底峡谷的发育大致始于中更新世约0.90Ma.东沙海底峡谷最先形成于现今峡谷中游的上段,随着浊流或其他重力流不断的下切侵蚀,峡谷顺陆坡而下逐渐向海盆方向延伸,同时在溯源侵蚀作用下逆坡向陆架破折带方向延伸至现今峡谷头部.上述11个地震层序界面的年代大致可以与全球低海平面期进行对比,表明海平面变化是控制东沙海底峡谷多期下切-充填的重要因素.综合分析认为,东沙海底峡谷的成因与台湾隆升及台西南前陆盆地的发育这一大的区域构造背景有关,但没有证据表明东沙海底峡谷的形成与断裂、岩浆活动等存在直接联系.陆坡重力搬运过程(包括滑坡及浊流)对东沙海底峡谷的形成演化具有重要影响.

References

[1]  丁巍伟, 李家彪, 李军. 2010. 南海北部陆坡海底峡谷形成机制探讨. 海洋学研究, 28: 26-31
[2]  丁巍伟, 李家彪, 李军, 等. 2013. 南海珠江口外海底峡谷形成的控制因素及过程. 热带海洋学报, 32: 63-72
[3]  杜德莉. 1991. 台西南盆地地质构造特征及油气远景. 海洋地质与第四纪地质, 11: 21-33
[4]  杜德莉. 1994. 台西南盆地的构造演化与油气藏组合分析. 海洋地质与第四纪地质, 14: 5-18
[5]  杜文斌. 2002. 南海最北部地磁与地形之研究. 硕士学位论文. 桃园: “中央”大学. 1-121
[6]  黄永样, Erwin Suess, 吴能友, 等. 2008. 南海北部陆坡甲烷和天然气水合物地质: 中德合作SO-177航次成果专报. 北京: 地质出版社. 197
[7]  金庆焕. 地质矿产部, 南海地质调查指挥部. 1989. 南海地质与油气资源. 北京: 地质出版社. 417
[8]  卢俊臣. 1994. 枋寮海底峡谷的形貌, 震测特征及其物理沉积作用. 硕士学位论文. 台北: 台湾大学. 1-132
[9]  庞雄, 陈长民, 施和生, 等. 2005. 相对海平面变化与南海珠江深水扇系统的响应. 地学前缘, 12: 167-177
[10]  秦国权. 1996. 微体古生物在珠江口盆地新生代晚期层序地层学研究中的应用. 海洋地质与第四纪地质, 16: 1-18
[11]  吴时国, 袁圣强, 董冬冬, 等. 2009. 南海北部深水区中新世生物礁发育特征. 海洋与湖沼, 40: 117-121
[12]  俞何兴, 陈汝勤. 1994. 台湾海域之沉积盆地. 台北: 台湾编译馆. 230
[13]  Adeogba A A, McHargue T R, Graham S A. 2005. Transient fan architecture and depositional controls from near-surface 3-D seismic data, Niger Delta continental slope. AAPG Bull, 89: 627-643
[14]  Brown L F, Fisher W L. 1980. Seismic stratigraphic interpretation and petroleum exploration. AAPG Department of Education. 125
[15]  Catterall V, Redfern J, Gawthorpe R, et al. 2010. Architectural style and quantification of a submarine channel-levee system located in a structurally complex area: Offshore Nile Delta. J Sediment Res, 80: 991-1017
[16]  Chiang C S, Yu H S. 2006. Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology, 80: 199-213
[17]  Chiang C S, Yu H S, Noda A, et al. 2012. Avulsion of the Fangliao submarine canyon off southwestern Taiwan as revealed by morphological analysis and numerical simulation. Geomorphology, 177: 26-37
[18]  Chuang C Y, Yu H S. 2002. Morphology and canyon forming processes of upper reach of the Penghu submarine canyon off southwestern Taiwan. Terr Atmos Ocean Sci, 13: 91-108
[19]  De Ruig M J, Hubbard S M. 2006. Seismic facies and reservoir characteristics of a deep-marine channel belt in the Molasse Foreland Basin, Puchkirchen formation, Austria. AAPG Bull, 90: 735-752
[20]  Deptuck M E, Steffens G S, Barton M, et al. 2003. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea. Mar Pet Geol, 20: 649-676
[21]  Ding W W, Li J B, Han X Q, et al. 2010. Morphotectonics and formation of the Taiwan Bank Canyon, Southwest offshore Taiwan island. J Oce Mar Sci, 1: 65-78
[22]  Ding W W, Li J B, Li J, et al. 2013. Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea. Mar Geo Res, 34: 221-238
[23]  Dykstra M, Kneller B. 2007. Canyon San Fernando, Baja California, Mexico: A deep-marine channel-levee complex that evolved from submarine canyon confinement to unconfined deposition. Atlas of deep-water outcrops. AAPG Studies Geol, 56: 14
[24]  Eakin D H, McIntosh K D, Van Avendonk H J A, et al. 2014. Crustal-scale seismic profiles across the Manila subduction zone: The transition from intraoceanic subduction to incipient collision. J Geophys Res, 119: 1-17
[25]  Gee M J R, Gawthorpe R L. 2006. Submarine channels controlled by salt tectonics: Examples from 3D seismic data offshore Angola. Mar Pet Geol, 23: 443-458
[26]  Gong C L, Wang Y M, Zhu W L, et al. 2011. The central submarine canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Mar Pet Geol, 28: 1690-1702
[27]  Haq B U, Hardenbol J, Vail P R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156-1167
[28]  Hsiung K, Yu H, Chiang C. 2014. Seismic characteristics, morphology and formation of the ponded Fangliao fan off Southwestern Taiwan, northern South China Sea. Geol Mar Lett, 34: 59-74
[29]  Hsu S K, Yeh Y, Doo W B, et al. 2004. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Mar Geophys Res, 25: 29-44
[30]  Hsu S K, Sibuet J. 1995. Is Taiwan the result of Arc-Continent Or Arc-Arc collision? Earth Planet Sci Lett, 136: 315-324
[31]  Hung J J, Ho C Y. 2014. Typhoon- and earthquake-enhanced concentration and inventory of dissolved and particulate trace metals along two submarine canyons off southwestern Taiwan. Estuarine Coastal Shelf Sci, 136: 179-190
[32]  Kane I A, Hodgson D M. 2011. Sedimentological criteria to differentiate submarine channel levee subenvironments: Exhumed examples from the Rosario Fm. (Upper Cretaceous) of Baja California, Mexico, and the Fort Brown Fm. (Permian), Karoo Basin. S Africa Mar Pet Geol, 28: 807-823
[33]  Kuang Z G, Zhong G F, Wang L L, et al. 2014. Channel-related sediment waves on the eastern slope offshore Dongsha islands, northern South China Sea. J Asian Earth Sci, 79: 540-551
[34]  Kurt H, Demirba E, Ku??u ?. 2000. Active submarine tectonism and formation of the gulf of saros, northeast Aegean Sea, inferred from multi-channel seismic reflection data. Mar Geol, 165: 13-26
[35]  Lee T Y, Tang C H, Ting J S, et al. 1993. Sequence stratigraphy of the Tainan Basin, offshore southwestern Taiwan. Petrol Geol Taiwan, 28: 119-158
[36]  Lester R, Lavier L L, McIntosh K, et al. 2012. Active extension in Taiwan’S Precollision Zone: A new model of plate bending in continental crust. Geology, 40: 831-834
[37]  Li X, Xie X N, Fairweather L, et al. 2012. Morphology, sedimentary features and evolution of a large palaeo submarine canyon in Qiongdongnan basin, Northern South China Sea. J Asian Earth Sci. 62: 685-696
[38]  Lin A T, Watts A B, Hesselbo S P. 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Res, 15: 453-478
[39]  Lin A T, Liu C S, Lin C C, et al. 2008. Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Mar Geol, 255: 186-203
[40]  Liu C, Lundberg N, Reed D L, et al. 1993. Morphological and seismic characteristics of the Kaoping submarine canyon. Mar Geol, 111: 93-108
[41]  Liu J T, Wang Y H, Lee I, et al. 2010. Quantifying tidal signatures of the benthic nepheloid layer in Gaoping submarine canyon in Southern Taiwan. Mar Geol, 271: 119-130
[42]  Miller K G, Kominz M A, Browning J V, et al. 2005. The Phanerozoic record of global sea-level change. Science, 310: 1293-1298
[43]  Mitchum R M Jr, Vail P R, Sangree J B. 1977a. Seismic stratigraphy and global changes of sea level, Part 6: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: Payton C E, ed. Seismic stratigraphy—Applications to hydrocarbon exploration. AAPG Memoir, 26: 117-134
[44]  Mitchum R M Jr, Vail P R, Thompson III S. 1977b. Seismic stratigraphy and global changes of sea level, Part 2: The depositional sequence as a basic unit for stratigraphic analysis. Seismic stratigraphy—Applications to hydrocarbon exploration. AAPG Memoir, 26: 53-62
[45]  Mutti E, Normark W R. 1991. An integrated approach to the study of turbidite systems. In: Weimer P, Link M H, eds. Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. New York: Springer. 75-106
[46]  Posamentier H W, Jervey M T, Vail P R. 1988. Eustatic controls on clastic deposition I—Conceptual framework. In: Wilgus C K, Hastings B S, Kendall C G St C, et al., eds. Sea-Level Changes—An Integrated Approach. SEPM Special Publication. 42, 125-154
[47]  Posamentier H W, Vail P R. 1988. Eustatic controls on clastic deposition II—Sequence and systems tract models. In: Wilgus C K, Hastings B S, Kendall C G St C, et al., eds. Sea-Level Changes—An Integrated Approach. SEPM Special Publication. 42, 125-154
[48]  Posamentier H W. 2005. Application of 3D seismic visualization techniques for seismic stratigraphy, seismic geomorphology and depositional systems analysis: Examples from fluvial to deep-marine depositional environments. In: Petroleum Geology Conference series. Geol Soc London, 6: 1565-1576
[49]  Posamentier H W, Walker R G. 2006. Facies Models Revisited. SEPM. 144
[50]  Reijenstein H M, Posamentier H W, Bhattacharya J P. 2011. Seismic geomorphology and high-resolution seismic stratigraphy of inner-shelf fluvial, estuarine, deltaic, and marine sequences, Gulf of Thailand. AAPG Bull, 95: 1959-1990
[51]  Schwenk T, Spie? V, Breitzke M, et al. 2005. The architecture and evolution of the Middle Bengal Fan in vicinity of the active Channel-Levee system imaged by high-resolution seismic data. Mar Pet Geol, 22: 637-656
[52]  Su M, Xie X N, Xie Y, et al. 2014. The segmentations and the significances of the Central Canyon System in the Qiongdongnan basin, northern South China Sea. J Asian Earth Sci, 79: 552-563
[53]  Suess E. 2005. RV SONNE cruise report SO 177, Sino-German cooperative project, South China Sea continental margin: Geological methane budget and environmental effects of methane emissions and gashydrates. IFM-GEOMAR Reports, 133
[54]  Suppe J. 1981. Mechanics of mountain building and metamorphism in Taiwan. Mem Geol Soc China, 4: 67-89
[55]  Wang P X, Prell W L, Blum P, et al. 2000. Proc. ODP, Init. Repts., 184: College Station, TX (Ocean Drilling Program)
[56]  Yang K M, Wu J C, Cheng E, et al. 2014. Development of tectonostratigraphy in distal part of foreland basin in southwestern Taiwan. J Asian Earth Sci, 88: 98-115
[57]  Yeh Y C, Hsu S K. 2004. Crustal structures of the northernmost South China Sea: Seismic reflection and gravity modeling. Mar Geophys Res, 25: 45-61
[58]  Yu H S, 1992. Naming of the submarine canyons off northeastern Taiwan: A note. Acta Oceanogr Taiwan, 29: 107-113
[59]  Yu H S, Huang E. 1998. Morphology and origin of the Shoushan submarine canyon off southwestern Taiwan. J Geol Soci, 41: 565-580
[60]  Yu H S, Chang J F. 2002. The Penghu submarine canyon off southwestern Taiwan: Morphology and origin. Terr Atmos Ocean Sci, 13: 547-562
[61]  Yu H S, Hong E. 2006. Shifting submarine canyons and development of a foreland basin in SW Taiwan: Controls of foreland sedimentation and longitudinal sediment transport. J Asian Earth Sci, 27: 922-932
[62]  Yu H S, Huang Z. 2009. Morphotectonics and sedimentation in convergent margin basins: An example from juxtaposed marginal sea basin and foreland basin, Northern South China Sea. Tectonophysics, 466: 241-254
[63]  Zhu M, Graham S, Pang X, et al. 2010. Characteristics of migrating submarine canyons from the middle miocene to present: Implications for paleoceanographic circulation, Northern South China Sea. Mar Pet Geol, 27: 307-319

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133