全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

风化矿物斜钾铁矾40Ar/39Ar定年与Ar封闭温度

, PP. 295-303

Keywords: 斜钾铁矾,40Ar/39Ar,封闭温度,环境温度,颗粒大小,年龄

Full-Text   Cite this paper   Add to My Lib

Abstract:

?新疆吐哈地区有色金属矿山上部氧化带中,发现了一种新的含K硫酸盐矿物-斜钾铁矾(KFe(SO4)2),含K量较高.若能应用40Ar/39Ar法测定该矿物年龄,可以研究该地区干旱化的时间、过程,从而探讨青藏高原隆升或两极冰盖的形成演化对于该地区气候的影响.但是,吐哈地区温度可达60℃,长时间的高温是否会引起矿物中的Ar的丢失?矿物颗粒细小是否会引起矿物中的Ar的丢失?这对于矿物年龄的解释具有重要意义.本文根据扩散理论,应用阶段加热的方法进行Ar的扩散特性研究,在此基础上,应用简单的内生长-扩散模型模拟了可能的高地表温度和矿物颗粒大小对样品年龄的影响.实验结果表明斜钾铁矾中Ar的扩散频率因子logD0/a2=13.71/s,活化能Ea=71.30kcal/mol,封闭温度Tc为294℃(假设冷却速率为10℃/Ma),活化能和封闭温度较高.而且,模拟结果表明斜钾铁矾形成后,在外界环境下温度和矿物颗粒大小对年龄几乎没有影响.在误差范围内重复性测试结果基本一致,进一步证明斜钾铁矾适用于40Ar/39Ar定年.

References

[1]  1 Vasconcelos P M. K-Ar and 40Ar/39Ar geochronology of weathering processes. Annu Rev Earth Planet Sci, 1999, 27: 183-229??
[2]  2 Vasconcelos P M, Conroy M. Geochronology of weathering and landscape evolution, Dugald River valley, NW Queensland, Australia. Geochim Cosmochim Acta, 2003, 67: 2913-2930??
[3]  3 Araibia G, Matthews S J, Arce P D. K-Ar and 40Ar/39Ar of supergene process in the Atacama Desert, Northern Chile: Tectonic and climatic relations. J Geol Soc, 2006, 163: 107-118 ??
[4]  4 Sillitoe R H, Mckee E H, Vila T, et al. Reconnaissance K-Ar geochronology of the Maricunga gold-silver belt, Northern Chile. Econ Geol, 1991, 86: 1261-1270??
[5]  5 Sillitoe R H, McKee E H. Age of supergene oxidation and enrichment in the Chilean porphyry copper province. Econ Geol, 1996, 91: 164-179??
[6]  6 Clark A, Tosdal R, Farar E, et al. Geomorphology environment and age of supergene enrichment of the Cuajone, Quellaveco, and Toquepala Porphyry Copper Deposits, Southeastern Peru. Econ Geol, 1990, 85: 1604-1628 ??
[7]  7 Alpers C N, Brimhall G H. Middle Miocene climatic change in the Atacama Desert, northern Chile: Evidence from supergene mineralization at La Escondida. Geol Soc Am Bull, 1988, 100: 1640-1656??
[8]  8 Mote T I, Becker T A, Renne P, et al. Chronology of exotic mineralization at El Salvador, Chile, by 40Ar/39Ar dating of copper wad and supergene alunite. Econ Geol, 2001, 96: 351-366
[9]  9 Bouzari F, Clark A H. Anatomy, evolution, and metallogenic significance of the supergene orebody of the Cerro Colorado Porphyry Copper Deposit, I Region, Northern Chile. Econ Geol, 2002, 97: 1701-1740??
[10]  10 Quang C X, Clark A H, Lee J K W, et al. 40Ar/39Ar ages of hypogene and supergene mineralization in the Cerro Verde-Santa Rosa porphyry Cu-Mo cluster, Arequipa, peru. Econ Geol, 2003, 98: 1683-1696??
[11]  11 Quang C X, Clark A H, Lee J K W, et al. Response of supergene processes to episodic cenozic uplift, pediment erosion and ignimbrite eruption in the porphyry copper province of southern Peru. Econ Geol, 2005, 100: 87-114??
[12]  12 涂光炽, 李锡林. 干旱和极端干旱气候条件下硫化物矿床氧化带发育特征(以西北五个矿床为例说明). 地质学报, 1963, 43: 361-377
[13]  13 秦克章, 丁奎首, 许英霞, 等. 东天山红山Cu-Au矿床氧化带首次发现的副针绿矾巨晶及其多型针绿矾. 岩石学报, 2008, 24: 1112- 1122
[14]  14 温春齐, 徐新煌, 茅燕石. 小热泉子铜矿床成矿过程分析. 矿物岩石, 2002, 22 : 29-32
[15]  15 韩照信, 栾丽君, 王朝友. 康古尔塔格金矿床氧化带矿物初步研究及意义. 西安科技大学学报, 2004, 24: 324-327
[16]  16 吴雪晶. 东天山马头滩金矿成矿地质特征. 新疆地质, 2006, 25: 267-273
[17]  17 许英霞, 秦克章, 丁奎首, 等. 东天山红山高硫型浅成低温铜.金矿床: 中生代成矿与新生代氧化的K/Ar、40Ar/39Ar年代学证据及其古构造和古气候意义. 岩石学报, 2008, 24 : 2371-2383
[18]  18 三金柱, 惠卫东, 秦克章, 等. 新疆哈密图拉尔根全岩矿化岩浆铜-镍-钴矿床地质特征及找矿方向. 矿床地质, 2007, 26: 307-316
[19]  19 An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoon and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times. Nature, 2001, 411: 62-66??
[20]  20 Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 2002, 416: 159-163??
[21]  21 Kennrtt J P. Cenozoic evolution of Antarctic Glaciation, the circum-antarctic ocean, and their impact on global paleoceanography. J Geophys Res, 1977, 82: 3843-3860??
[22]  22 Leckie R M, Webb P N. Late oligocene-early Miocene glacial record of the Ross Sea, Antarctica: Evidence from DSDP Site270. Geology, 1983, 11: 578-582
[23]  23 Zachos J, Pagani M. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686-693
[24]  24 Larsen H C, Saunders A D, Clift P D, et al. Seven million years of glaciation in Greenland. Science, 1994, 264: 952-955??
[25]  25 Roth E S. Temperature and water content as factors in desert weathering. J Geol, 1964, 73: 454-468
[26]  26 MocDougall I, Harrison M K. Geochronology and Thermochronology by the 40Ar/39Ar Method. 2nd ed. New York: Oxford University Press, 1999. 1-269
[27]  27 Graeber E J, Rosenzweig A. The crystal structures of yavapaiite KFe(SO4)2 and Goldichite KFe(SO4)2·4H2O. Am Mineral, 1971, 56: 1917-1933
[28]  28 Berry L G. Powder Diffraction File (Sers 6). Philadelphia: Joint Committee on Powder Diffraction Standards, 1974
[29]  29 Fechtig H, Kalbitzer S. The diffusion of argon in potassium bearing solids. In: Schaeffer O A, Zahringer J, eds. Potassium Argon Dating. Heidelberg: Springer, 1966. 68-106
[30]  30 Dodson M H. Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol, 1973, 40: 259-274??
[31]  31 Kulp J L, Adler H H. Thermal study of jarosite. Am J Sci, 1950, 248: 475-487??
[32]  32 Drouet C, Navrotsky A. Synthesis, characterisation and thermochemistry of K-Na-H3O jarosites. Geochim Cosmochim Acta, 2003, 67: 2063-2076
[33]  33 Hutton O C. Yavapaiite, an anhydrous potassium, ferric sulphate from Jerome, Arizona. Am Mineral, 1959, 44: 1105-1114
[34]  34 Arno M. Iron oxide from jarosite and similar compounds. Germany Patent, 1984-DD215999
[35]  35 Ozisik M N. Boundary Value Problems of Heat Conduction. New York: Dover Publications, 1989. 504
[36]  36 Wolf R A, Farley K A, Kass D M. Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chem Geol, 1998, 148: 105-114??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133