全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

常数型最优强迫在校正预报模式中的作用

, PP. 209-219

Keywords: 可预报性,预报误差,模式误差,最优强迫

Full-Text   Cite this paper   Add to My Lib

Abstract:

?采用著名的Lorenz63模式,数值研究了常数型最优强迫在校正数值模式中的作用.结果表明,当数值模式仅考虑由于参数误差导致的随状态变量发展变化的模式误差时,在数值模式倾向方程叠加常数型最优强迫能够很好地抵消该类模式误差对预报结果的影响;当数值模式未考虑观测中依赖于时间的随机过程时,常数型最优强迫也可以较好地抵消由随机过程导致的模式误差的影响.实际情形中,数值模式预报结果同时受到由随机过程和参数不确定性导致的模式误差及其相互作用的影响.结果表明,常数型最优强迫方法同样能够在很大程度上抵消该类混合型模式误差对预报结果的影响.综上所述,即使模式物理过程产生的模式误差是依赖于时间变化的,在模式中叠加常数型最优强迫校正模式的方法也可以在很大程度上抵消模式误差对预报结果的影响.常数型最优强迫方法可能是一个较好的校正模式和改进模式预报技巧的方法.

References

[1]  1 Lorenz E N. Climate predictability. In: The Physical Basics of Climate Modeling. WMO GARP Publ Ser, 1975, 16: 132-136
[2]  2 Lorenz E N. Deterministic nonperiodic flow. J Atmos Sci, 1963, 20: 130-141??
[3]  7 Charney J G, Fleagle V E, Lally V E, et al. The feasibility of a global observation and analysis experiment. Bull Amer Meteorol Soc, 1996, 47: 200-220
[4]  8 Lorenz E N. A study of the predictability of a 28 variable atmospheric model. Tellus, 1965, 17: 321-333??
[5]  9 Lorenz E N. Atmospheric predictability experiments with a large numerical model. Tellus, 1982, 34: 505-513??
[6]  10 Smagorinsky J. Problems and promises of deterministic extended range forecasting. Bull Amer Meteorol Soc, 1969, 50: 286-312
[7]  11 Mu M, Duan W S, Wang B. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process Geophys, 2003, 10: 493-501??
[8]  12 Navon I M, Zou X, Derber J, et al. Variational data assimilation with an adiabatic version of NMC spectral model. Mon Weather Rev, 1992, 120: 1433-1446??
[9]  13 Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to prediction error statistic. J Geophys Res, 1994, 99: 10143-10162??
[10]  14 任宏利, 丑纪范. 数值模式的预报策略和方法研究进展. 地球科学进展, 2007, 22: 376-385
[11]  15 D’Andrea F, Vautard R. Reducing systematic errors by empirically correcting model errors. Tellus, 2000, 52A : 21-41
[12]  16 Roads J O. Predictability in the extended range. J Atoms Sci, 1987, 44: 1228-1251
[13]  17 Vannitsem S, Toth Z. Short-term dynamics of model errors. J Atmos Sci, 2002, 59: 2594-2604??
[14]  18 Qiu C J, Chou J F. A new approach to improve the numerical weather prediction. Sci China Ser B, 1987, 17: 903-908
[15]  19 Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization. Math Program, 1989, 45: 503-528??
[16]  20 LeDimet F, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus Ser A-Dyn Meteorol Oceanol, 1986, 38: 97-110
[17]  21 Zebiak S E, Cane M A. A model El Nino-Southern oscillation. Mon Weather Rev, 1987, 115: 2262-2278??
[18]  22 Qiu C J, Chou J F. The method of optimizing parameters in numerical prediction model. Sci China Ser B, 1990, 20: 218-224
[19]  3 Ott E. Chaos in Dynamical System. Cambridge: Cambridge University Press, 1993. 397
[20]  4 Schubert S D, Suarez M. Dynamical predictability in a simple general circulation model: Average error growth. J Atmos Sci, 1989, 46: 353-370??
[21]  5 Simmons A J, Mureau R, Petroliagis T. Error growth and estimates of predictability from the ECMWF forecasting system. Q J R Meteorol Soc, 1995, 121: 1739-1771??
[22]  6 Leith C E. Numerical simulation of the Earth’s atmosphere. In: Alder B, ed. Methods in Computational Physics. New York: Academic Press, 1965. 1-28

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133