12 Kato Y, Nakamura K. Origin and global tectonic significance of Early Archean cherts from the Marble Bar greenstone belt, Pilbara Craton, Western Australia. Precambrian Res, 2003, 125: 191-243??
[13]
13 Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochim Cosmochim Acta, 1991, 55: 1875-1895??
[14]
14 Murray R W, Buchholtz Ten Brink M R, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 1990, 18: 268-271??
21 Zhang N, Xia W C, Shao J. Radiolarian successional sequences and rare earth element variations in Late Paleozoic chert sequences of South China: An integrated approach for study of the evolution of Paleo-Ocean basins. Geomicrobiol J, 2002, 19: 439-460??
[17]
22 邝国敦, 吴浩若. 桂西晚古生代深水相地层. 地质科学, 2002, 37: 152-164
[18]
23 Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem Geol, 2008, 247: 133-153??
[19]
24 McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin B R, McKay G A, eds. Geochemistry and Mineralogy of Rare Earth Elements. Rev Mineral, 1989, 21: 169-200
[20]
25 Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res, 1996, 79: 37-55??
[21]
26 Kato Y, Nakao K, Isozaki Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change. Chem Geol, 2002, 182: 15-34??
[22]
27 Murray R W. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sediment Geol, 1994, 90: 213-232??
[23]
28 Yu B S, Dong H L, Widom E, et al. Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. J Asian Earth Sci, 2009, 34: 418-436??
[24]
29 Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 1985. 9-56
[25]
30 Takebe M, Yamamoto K. Geochemical fractionation between porcellanite and host sediment. J Geol, 2003, 111: 301-312??
[26]
31 Condie K C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem Geol, 1993, 104: 1-37??
[27]
32 Gromet L P, Haskin L A, Korotev R L, et al. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim Cosmochim Ac, 1984, 48: 2469-2482??
37 Chen D Z, Qing H R, Yan X, et al. Hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistry of chert. Sediment Geol, 2006, 183: 203-216??
[33]
38 Kametaka M, Takebe M, Nagai H, et al. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; The Gufeng Formation: A continental shelf radiolarian chert. Sediment Geol, 2005, 174: 197-222??
[34]
39 Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. J Sediment Res, 1996, 66: 107-118
[35]
40 Maliva R G, Knoll A H, Simonson B M. Secular change in the Precambrian silica cycle: Insights from chert petrology. Geol Soc Am Bull, 2005, 117: 835-845??
[36]
41 Treguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean: A reestimate. Science, 1995, 268: 375-379??
[37]
42 Hesse R. Origin of chert: Diagenesis of biogenic siliceous sediments. Geosci Can, 1988, 15: 171-192
[38]
43 Murray R W, Jones D L, Brink M R. Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet. Geology, 1992, 20: 271-274??
[39]
44 Bohrmann G, Abelmann A, Gersonde R, et al. Pure siliceous ooze, a diagenetic environment for early chert formation. Geology, 1994, 22: 207-210??
[40]
45 Kastner M, Keene J B, Gieskes J M. Diagenesis of siliceous oozes, I. Chemical controls on the rate of opal-A to opal-CT transformation: An experimental study. Geochim Cosmochim Acta, 1977, 41: 1041-1059??
[41]
46 Williams L A, Parks G A, Crerar D A. Silica diagenesis, I, Solubility controls. J Sediment Res, 1985, 55: 301-311
[42]
47 Yamamoto K. A possible mechanism of rhythmic alternation of bedded cherts revealed by their chemical composition. J Earth Planet Sci, 1998, 45: 29-39
[43]
48 Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis. Geochim Cosmochim Acta, 1992, 56: 2657-2671??
[44]
49 Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: Perspectives gained from the DSDP and ODP record. Geochim Cosmochim Acta, 1992, 56: 1897-1913??
[45]
50 Brueckner H K, Snyder W S. Chemical and Sr-isotopic variations during diagenesis of Miocene siliceous sediments of the Monterey Formation, California. J Sediment Res, 1985, 55: 553-568
[46]
51 Bostrom K, Peterson M. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Mar Geol, 1969, 7: 427-447??
[47]
52 Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity. Sediment Geol, 1986, 47: 125-148??
53 Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sediment Geol, 1987, 52: 65-108??
[54]
54 Olivarez A M, Owen R M. REE/Fe variations in hydrothermal sediments: Implications for the REE content of seawater. Geochim Cosmochim Acta, 1989, 53: 757-762??
[55]
55 German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermal scavenging of rare-earth elements in the ocean. Nature, 1990, 345: 516-518??
[56]
56 German C R, Hergt J, Palmer M R, et al. Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21°N East Pacific Rise. Chem Geol, 1999, 155: 65-75
[57]
57 Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim Cosmochim Acta, 1999, 63: 627-643??
[58]
58 Dias A S, Fruh-Green G L, Bernasconi S M, et al. Geochemistry and stable isotope constraints on high-temperature activity from sediment cores of the Saldanha hydrothermal field. Mar Geol, 2011, 279: 128-140??
61 Liu Y G, Miah M, Schmitt R A. Cerium: A chemical tracer for paleo-oceanic redox conditions. Geochim Cosmochim Acta, 1988, 52: 1361-1371??
[62]
62 Holser W T. Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeogr Palaeoclimat Palaeoecol, 1997, 132: 309-323??
[63]
63 De Baar H J W, Bacon M P, Brewer P G, et al. Rare earth elements in the Pacific and Atlantic Oceans. Geochim Cosmochim Acta, 1985, 49: 1943-1959??
[64]
64 Bellanca A, Masetti D, Neri R. Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): Assessing REE sensitivity to environmental changes. Chem Geol, 1997, 141: 141-152??
[65]
65 Matsumoto R, Minai Y, Okamura M. Geochemistry and depositional environments of bedded chert of the Cretaceous Shimanto Group, Shikoku, southwest Japan. Modern Geology, 1988, 12: 197-224
[66]
66 Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater. Geochim Cosmochim Acta, 1994, 58: 1567-1579??
[67]
67 Thomson J, Carpenter M, Colley S, et al. Metal accumulation rates in northwest Atlantic pelagic sediments. Geochim Cosmochim Acta, 1984, 48: 1935-1948??
[68]
68 Hara H, Kurihara T, Kuroda J, et al. Geological and geochemical aspects of a Devonian siliceous succession in northern Thailand: Implications for the opening of the Paleo-Tethys. Palaeogeogr Palaeoclimat Palaeoecol, 2010, 297: 452-464??
[69]
69 Condie K C. Another look at rare earth elements in shales. Geochim Cosmochim Acta, 1991, 55: 2527-2531??
[70]
70 Sholkovitz E R. Rare-earth elements in marine sediments and geochemical standards. Chem Geol, 1990, 88: 333-347??
[71]
71 Kamber B S, Greig A, Collerson K D. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochim Cosmochim Acta, 2005, 69: 1041-1058??
[72]
72 Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim Cosmochim Acta, 1996, 60: 1709-1725??
[73]
73 Jochum K P, Seufert H M, Spettel B, et al. The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochim Cosmochim Acta, 1986, 50: 1173-1183??
[74]
74 Tanaka K, Takahashi Y, Shimizu H. Local structure of Y and Ho in calcite and its relevance to Y fractionation from Ho in partitioning between calcite and aqueous solution. Chem Geol, 2008, 248: 104-113??
[75]
75 Zhang J, Amakawa H, Nozaki Y. The comparative behaviors of yttrium and lanthanides in the seawater of the North Pacific. Geophys Res Lett, 1994, 21: 2677-2680??
[76]
76 Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment. Earth Planet Sc Lett, 1997, 148: 329-340??
[77]
77 Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways. Aquat Geochem, 2006, 12: 39-72??
[78]
78 Nozaki Y, Lerche D, Alibo D S, et al. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand. Geochim Cosmochim Acta, 2000, 64: 3983-3994??
[79]
79 Ohta A, Ishii S, Sakakibara M, et al. Systematic correlation of the Ce anomaly with the Co/(Ni+ Cu) ratio and Y fractionation from Ho in distinct types of Pacific deep-sea nodules. Geochem J, 1999, 33: 399-417??
81 Guo F, Fan W M, Wang Y J, et al. Upper Paleozoic basalts in the Southern Yangtze Block: Geochemical and Sr-Nd isotopic evidence for asthenosphere-lithosphere interaction and opening of the Paleo-Tethyan Ocean. Int Geol Rev, 2004, 46: 332-346??
84 Jian P, Liu D, Kr?ner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 2009, 113: 767-784??
[85]
85 Armstrong H A, Owen A W, Floyd J D. Rare earth geochemistry of Arenig cherts from the Ballantrae Ophiolite and Leadhills Imbricate Zone, southern Scotland: Implications for origin and significance to the Caledonian Orogeny. J Geol Soc London, 1999, 156-549??
88 Cai J X, Zhang K J. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics, 2009, 467: 35-43??