全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

桂西晚古生代硅质岩地球化学特征及其对右江盆地构造演化的启示

, PP. 304-316

Keywords: 晚古生代,硅质岩,地球化学,沉积背景,右江盆地

Full-Text   Cite this paper   Add to My Lib

Abstract:

?桂西田林八渡地区发育晚古生代连续的深水相沉积,本文对其中的硅质岩的主量元素、微量元素及稀土元素进行了研究.该地区上古生界除鹿寨组硅质岩具有较低的非陆源硅含量Sinon-ter/Sibulk(%)(平均值为71.8%)及较低的“纯硅质岩”组分(40%~70%)外,其它硅质岩均具有较高的非陆源硅(大于80%)及“纯硅质岩”组分(大于70%),反映其具有较高的硅化程度.除中下泥盆统平恩组底部沉积物的Al/(Al+Fe+Mn)值及非陆源铁的比例Feter/Febulk(%)分别在0.05~0.26和13.1%~14.5%之间,反映其受到热液作用的影响外,其他硅质岩均具有较高的Al/(Al+Fe+Mn)值(0.39~0.81)及Feter/Febulk(%)值(23.1%~186.8%),均为非热液成因硅质岩.中下泥盆统平恩组硅质岩及上泥盆统榴江组硅质岩的Ce/Ce*值及Y/Ho值分别为0.71±0.07,0.81±0.08和33.49±1.27,36.10±2.05,形成于开阔的边缘海环境;上泥盆统-下石炭统鹿寨组硅质岩的Ce/Ce*值及Y/Ho值分别为1.09±0.07和28.60±1.25,可能形成于受海山或海底高地浊流沉积影响明显的环境;上石炭统-下二叠统南丹组和中下二叠统四大寨组硅质岩的Ce/Ce*值及Y/Ho值分别为0.67±0.08,0.73±0.11和36.01±1.00,32.00±2.25,形成于与开阔洋盆相关的环境.结合右江其它地区硅质岩的地球化学特征认为,晚古生代右江盆地属于古特提斯洋的一部分,其硅质岩的形成环境可能受控于古特提斯洋的形成与演化.右江盆地的裂解至少发生在早中泥盆世,到早中二叠世盆地具有演化为开阔洋盆的趋势.

References

[1]  1 杜远生, 黄宏伟, 黄志强, 等. 右江盆地晚古生代-三叠纪盆地转换及其构造意义. 地质科技情报, 2009, 28: 10-15
[2]  2 刘宝珺, 许效松, 潘杏南, 等. 中国南方古大陆沉积地壳演化与成矿. 北京: 科学出版社, 1993. 42-46
[3]  3 陈洪德, 曾允孚. 右江沉积盆地的性质及演化讨论. 岩相古地理, 1990, 10: 28-37
[4]  4 曾允孚, 刘文均, 陈洪德, 等. 华南右江复合盆地的沉积构造演化. 地质学报, 1995, 69: 113-124
[5]  5 秦建华, 吴应林, 颜仰基, 等. 南盘江盆地海西-印支期沉积构造演化. 地质学报, 1996, 70: 99-107
[6]  6 殷鸿福, 吴顺宝, 杜远生, 等. 华南是特提斯多岛洋体系的一部分. 地球科学—中国地质大学学报, 1999, 24: 1-11
[7]  7 钟大赉, 吴根耀, 季建清. 滇东南发现蛇绿岩. 科学通报, 1998, 43: 1365-1370
[8]  8 吴浩若, 邝国敦, 王忠诚. 广西晚古生代构造沉积背景的初步研究. 地质科学, 1997, 32: 11-18
[9]  9 王忠诚, 吴浩若, 邝国敦. 桂西晚古生代海相玄武岩的特征及其形成环境. 岩石学报, 1997, 13: 260-265
[10]  10 吴根耀, 吴浩若, 钟大赉, 等. 滇桂交界处古特提斯的洋岛和岛弧火山岩. 现代地质, 2000, 14: 393-400
[11]  11 吴浩若. 晚古生代-三叠纪南盘江海的构造古地理问题. 古地理学报, 2003, 5: 63-76
[12]  12 Kato Y, Nakamura K. Origin and global tectonic significance of Early Archean cherts from the Marble Bar greenstone belt, Pilbara Craton, Western Australia. Precambrian Res, 2003, 125: 191-243??
[13]  13 Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochim Cosmochim Acta, 1991, 55: 1875-1895??
[14]  14 Murray R W, Buchholtz Ten Brink M R, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 1990, 18: 268-271??
[15]  15 陈洪德, 曾允孚. 广西丹池盆地上泥盆统榴江组硅质岩沉积特征及成因讨论. 矿物岩石, 1989, 19: 22-29
[16]  21 Zhang N, Xia W C, Shao J. Radiolarian successional sequences and rare earth element variations in Late Paleozoic chert sequences of South China: An integrated approach for study of the evolution of Paleo-Ocean basins. Geomicrobiol J, 2002, 19: 439-460??
[17]  22 邝国敦, 吴浩若. 桂西晚古生代深水相地层. 地质科学, 2002, 37: 152-164
[18]  23 Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem Geol, 2008, 247: 133-153??
[19]  24 McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin B R, McKay G A, eds. Geochemistry and Mineralogy of Rare Earth Elements. Rev Mineral, 1989, 21: 169-200
[20]  25 Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res, 1996, 79: 37-55??
[21]  26 Kato Y, Nakao K, Isozaki Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change. Chem Geol, 2002, 182: 15-34??
[22]  27 Murray R W. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sediment Geol, 1994, 90: 213-232??
[23]  28 Yu B S, Dong H L, Widom E, et al. Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. J Asian Earth Sci, 2009, 34: 418-436??
[24]  29 Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 1985. 9-56
[25]  30 Takebe M, Yamamoto K. Geochemical fractionation between porcellanite and host sediment. J Geol, 2003, 111: 301-312??
[26]  31 Condie K C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem Geol, 1993, 104: 1-37??
[27]  32 Gromet L P, Haskin L A, Korotev R L, et al. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim Cosmochim Ac, 1984, 48: 2469-2482??
[28]  33 邱振, 王清晨. 湘黔桂地区中上二叠统硅质岩的地球化学特征及沉积背景. 岩石学报, 2010, 26: 3612-3628
[29]  34 邵军, 夏文臣. 云南富宁地区早石炭世硅质岩稀土元素特征及沉积环境分析. 西北地质, 2002, 35: 41-44
[30]  35 毛晓冬, 段其发, 陈泽云. 湘桂地区泥盆系硅质岩稀土元素地球化学及沉积环境. 岩石矿物学杂志, 1999, 18: 229-236
[31]  36 王卓卓, 陈代钊, 汪建国. 广西南宁地区泥盆纪硅质岩稀土元素地球化学特征及沉积背景. 地质科学, 2007, 42: 558-569
[32]  37 Chen D Z, Qing H R, Yan X, et al. Hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistry of chert. Sediment Geol, 2006, 183: 203-216??
[33]  38 Kametaka M, Takebe M, Nagai H, et al. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; The Gufeng Formation: A continental shelf radiolarian chert. Sediment Geol, 2005, 174: 197-222??
[34]  39 Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. J Sediment Res, 1996, 66: 107-118
[35]  40 Maliva R G, Knoll A H, Simonson B M. Secular change in the Precambrian silica cycle: Insights from chert petrology. Geol Soc Am Bull, 2005, 117: 835-845??
[36]  41 Treguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean: A reestimate. Science, 1995, 268: 375-379??
[37]  42 Hesse R. Origin of chert: Diagenesis of biogenic siliceous sediments. Geosci Can, 1988, 15: 171-192
[38]  43 Murray R W, Jones D L, Brink M R. Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet. Geology, 1992, 20: 271-274??
[39]  44 Bohrmann G, Abelmann A, Gersonde R, et al. Pure siliceous ooze, a diagenetic environment for early chert formation. Geology, 1994, 22: 207-210??
[40]  45 Kastner M, Keene J B, Gieskes J M. Diagenesis of siliceous oozes, I. Chemical controls on the rate of opal-A to opal-CT transformation: An experimental study. Geochim Cosmochim Acta, 1977, 41: 1041-1059??
[41]  46 Williams L A, Parks G A, Crerar D A. Silica diagenesis, I, Solubility controls. J Sediment Res, 1985, 55: 301-311
[42]  47 Yamamoto K. A possible mechanism of rhythmic alternation of bedded cherts revealed by their chemical composition. J Earth Planet Sci, 1998, 45: 29-39
[43]  48 Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis. Geochim Cosmochim Acta, 1992, 56: 2657-2671??
[44]  49 Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: Perspectives gained from the DSDP and ODP record. Geochim Cosmochim Acta, 1992, 56: 1897-1913??
[45]  50 Brueckner H K, Snyder W S. Chemical and Sr-isotopic variations during diagenesis of Miocene siliceous sediments of the Monterey Formation, California. J Sediment Res, 1985, 55: 553-568
[46]  51 Bostrom K, Peterson M. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Mar Geol, 1969, 7: 427-447??
[47]  52 Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity. Sediment Geol, 1986, 47: 125-148??
[48]  16 陈先沛, 陈多福. 广西上泥盆统乳房状燧石的热水沉积地球化学特征. 地球化学, 1989, 18: 1-8
[49]  17 周永章. 丹池盆地热水成因硅岩的沉积地球化学特征. 沉积学报, 1990, 8: 75-83
[50]  18 王卓卓, 陈代钊, 汪建国. 广西南宁地区泥盆系硅质岩地球化学特征及沉积环境. 沉积学报, 2007, 25: 239-245
[51]  19 王忠诚, 吴浩若, 邝国敦. 广西晚古生代硅岩的地球化学及其形成的大地构造环境. 岩石学报, 1995, 11: 449-455
[52]  20 邓希光, 李献华, 陈志刚. 广西钦州板城晚泥盆世硅质岩地球化学特征及沉积环境探讨. 地质科学, 2003, 38: 460-469
[53]  53 Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sediment Geol, 1987, 52: 65-108??
[54]  54 Olivarez A M, Owen R M. REE/Fe variations in hydrothermal sediments: Implications for the REE content of seawater. Geochim Cosmochim Acta, 1989, 53: 757-762??
[55]  55 German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermal scavenging of rare-earth elements in the ocean. Nature, 1990, 345: 516-518??
[56]  56 German C R, Hergt J, Palmer M R, et al. Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21°N East Pacific Rise. Chem Geol, 1999, 155: 65-75
[57]  57 Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim Cosmochim Acta, 1999, 63: 627-643??
[58]  58 Dias A S, Fruh-Green G L, Bernasconi S M, et al. Geochemistry and stable isotope constraints on high-temperature activity from sediment cores of the Saldanha hydrothermal field. Mar Geol, 2011, 279: 128-140??
[59]  59 丁林, 钟大赉. 滇西昌宁-孟连带古特提斯洋硅质岩稀土元素和铈异常特征. 中国科学 B辑: 化学, 1995, 25: 93-100
[60]  60 李献华. 赣东北蛇绿混杂岩带中硅质岩的地球化学特征及构造意义. 中国科学 D辑: 地球科学, 2000, 30: 284-290
[61]  61 Liu Y G, Miah M, Schmitt R A. Cerium: A chemical tracer for paleo-oceanic redox conditions. Geochim Cosmochim Acta, 1988, 52: 1361-1371??
[62]  62 Holser W T. Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeogr Palaeoclimat Palaeoecol, 1997, 132: 309-323??
[63]  63 De Baar H J W, Bacon M P, Brewer P G, et al. Rare earth elements in the Pacific and Atlantic Oceans. Geochim Cosmochim Acta, 1985, 49: 1943-1959??
[64]  64 Bellanca A, Masetti D, Neri R. Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): Assessing REE sensitivity to environmental changes. Chem Geol, 1997, 141: 141-152??
[65]  65 Matsumoto R, Minai Y, Okamura M. Geochemistry and depositional environments of bedded chert of the Cretaceous Shimanto Group, Shikoku, southwest Japan. Modern Geology, 1988, 12: 197-224
[66]  66 Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater. Geochim Cosmochim Acta, 1994, 58: 1567-1579??
[67]  67 Thomson J, Carpenter M, Colley S, et al. Metal accumulation rates in northwest Atlantic pelagic sediments. Geochim Cosmochim Acta, 1984, 48: 1935-1948??
[68]  68 Hara H, Kurihara T, Kuroda J, et al. Geological and geochemical aspects of a Devonian siliceous succession in northern Thailand: Implications for the opening of the Paleo-Tethys. Palaeogeogr Palaeoclimat Palaeoecol, 2010, 297: 452-464??
[69]  69 Condie K C. Another look at rare earth elements in shales. Geochim Cosmochim Acta, 1991, 55: 2527-2531??
[70]  70 Sholkovitz E R. Rare-earth elements in marine sediments and geochemical standards. Chem Geol, 1990, 88: 333-347??
[71]  71 Kamber B S, Greig A, Collerson K D. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochim Cosmochim Acta, 2005, 69: 1041-1058??
[72]  72 Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim Cosmochim Acta, 1996, 60: 1709-1725??
[73]  73 Jochum K P, Seufert H M, Spettel B, et al. The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochim Cosmochim Acta, 1986, 50: 1173-1183??
[74]  74 Tanaka K, Takahashi Y, Shimizu H. Local structure of Y and Ho in calcite and its relevance to Y fractionation from Ho in partitioning between calcite and aqueous solution. Chem Geol, 2008, 248: 104-113??
[75]  75 Zhang J, Amakawa H, Nozaki Y. The comparative behaviors of yttrium and lanthanides in the seawater of the North Pacific. Geophys Res Lett, 1994, 21: 2677-2680??
[76]  76 Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment. Earth Planet Sc Lett, 1997, 148: 329-340??
[77]  77 Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways. Aquat Geochem, 2006, 12: 39-72??
[78]  78 Nozaki Y, Lerche D, Alibo D S, et al. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand. Geochim Cosmochim Acta, 2000, 64: 3983-3994??
[79]  79 Ohta A, Ishii S, Sakakibara M, et al. Systematic correlation of the Ce anomaly with the Co/(Ni+ Cu) ratio and Y fractionation from Ho in distinct types of Pacific deep-sea nodules. Geochem J, 1999, 33: 399-417??
[80]  80 陈洪德, 覃建雄, 田景春, 等. 右江盆地层序充填动力学初探. 沉积学报, 2000, 18: 165-171
[81]  81 Guo F, Fan W M, Wang Y J, et al. Upper Paleozoic basalts in the Southern Yangtze Block: Geochemical and Sr-Nd isotopic evidence for asthenosphere-lithosphere interaction and opening of the Paleo-Tethyan Ocean. Int Geol Rev, 2004, 46: 332-346??
[82]  82 赵江天, 夏林圻, 夏祖春, 等. 北祁连山大陆裂谷硅质岩的稀土元素判别. 科学通报, 1999, 44: 665-669
[83]  83 吴根耀, 马力, 钟大赉, 等. 滇桂交界区印支期增生弧型造山带: 兼论与造山作用耦合的盆地演化. 石油实验地质, 2001, 23: 8-18
[84]  84 Jian P, Liu D, Kr?ner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 2009, 113: 767-784??
[85]  85 Armstrong H A, Owen A W, Floyd J D. Rare earth geochemistry of Arenig cherts from the Ballantrae Ophiolite and Leadhills Imbricate Zone, southern Scotland: Implications for origin and significance to the Caledonian Orogeny. J Geol Soc London, 1999, 156-549??
[86]  86 杜远生, 朱杰, 顾松竹, 等. 北祁连造山带寒武系-奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示. 中国科学 D辑: 地球科学, 2007, 37: 1314-1329
[87]  87 吴根耀, 季建清, 何顺东, 等. 广西凭祥地区早二叠世的岩浆弧及其构造意义. 矿物岩石, 2002, 22: 61-65
[88]  88 Cai J X, Zhang K J. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics, 2009, 467: 35-43??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133