全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

决定北半球冬季哈得莱环流年际变率的三维大气环流图像:观测分析和数值模拟

, PP. 192-208

Keywords: 哈得莱环流,年际变化,GAMIL2.0

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文利用NCEP/NCAR再分析资料,分析了1979~2008年北半球冬季哈得莱(Hadley)环流年际变化的特征,在此基础上,讨论了在观测海温驱动下大气环流模式的模拟结果.观测分析表明,近30年北半球冬季哈得莱环流年际变率的主导模态呈现出空间上的非均匀变化,哈得莱环流圈位于热带部分与其位于副热带部分的强度变化符号相反,这在表征其年际变化特征的另一指标——经向风垂直切变中亦有显著体现.大气环流模式AMIP积分试验结果表明,北半球冬季哈得莱环流强度的上述年际变化源于海温强迫.分析发现,热带中东太平洋和南印度洋暖海温距平强迫导致了哈得莱环流强度年际变化的主导模态呈现出空间上的非均匀变化.ElNi?o的局地作用和大气桥作用激发的太平洋局地哈得莱环流(30°S~30°N,150°E~90°W)和大西洋局地哈得莱环流(30°S~30°N,90°W~10°W)并非呈现出整体一致的变化,尽管二者纬向平均后分别使气候平均的哈得莱环流圈强度加强和减弱.ElNi?o遥强迫作用激发的西北太平洋反气旋(0°~30°N,100°E~150°E)使北半球Hadley环流圈强度减弱,ElNi?o和南印度洋暖海温距平共同强迫出的南印度洋反气旋(30°S~0°,60°E~100°E)使南半球Hadley环流圈的强度亦减弱.上述局地哈得莱环流的变化叠加后,因纬向平均的太平洋局地哈得莱环流强度在(副)热带部分的增强大(小)于纬向平均的大西洋局地哈得莱环流和西北太平洋、南印度洋局地哈得莱环流在(副)热带地区的减弱,结果使得哈得莱环流圈的强度在(副)热带部分偏强(弱);较之南半球,北半球强度变化稍强.因此,北半球冬季哈得莱环流年际变率的主导模态在空间上呈现出非均匀变化.

References

[1]  35 Zhou T, Wu B, Scaife A A, et al. The CLIVAR C 20C Project: Which components of the Asian-Australian Monsoon circulation variations are forced and reproducible? Clim Dyn, 2009, 33: 1051-1068
[2]  36 Zhou T J, Zhang J. The Vertical Structures of Atmospheric Temperature Anomalies associated with Two Flavors of El Ni?o Simulated by AMIP II Models. J Clim, 2011, 24: 1053-1070??
[3]  37 Hodson D, Sutton R, Cassou C, et al. Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: A multimodel comparison. Clim Dyn, 2010, 34: 1041-1058??
[4]  38 Scaife A A, Kucharski F, Folland C K, et al. The CLIVAR C 20C Project: Selected 20th century climate events. Clim Dyn, 2009, 33:603-614??
[5]  39 Kucharski F, Scaife A A, Yoo J H, et al. The CLIVAR C 20C project: Skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role? Clim Dyn, 2009, 33: 615-627
[6]  40 Sanchez-Gomez E, Cassou C, Hodson D, et al. North Atlantic weather regimes response to Indian-western Pacific Ocean warming: A multi-model study. Geophys Res Lett, 2008, 35, L15706, doi: 10.1029/2008GL034345??
[7]  41 Cook K. Role of continents in driving the Hadley cells. J Atmos Sci, 2003, 60: 957-976??
[8]  42 Kidson J, Vincent D, Newell R. Observational studies of the general circulation of the Tropics: Long term mean values. Q J Roy Meteorol Soc, 1969, 95: 258-287??
[9]  43 Reiter E. Long term wind variability in the tropical Pacific, its possible causes and effects. Mon Weather Rev, 1978, 106: 324-330??
[10]  44 Wang S, Todd P, John M. Zonal and meridional circulations in the equatorialzone as deduced from the divergence filed of the surface wind. Adv Atmos Sci, 1987, 4: 432-446??
[11]  45 Gill A E. Some simple solutions for heat-induced tropical circulation. Q J Roy Meteorol Soc, 1980, 106: 447-462??
[12]  46 Baines G. The Zonal Structure of the Hadley Circulation. Adv Atmos Sci, 2006, 26: 869-883
[13]  47 Wang C. ENSO and atmospheric circulation cells. CLIVAR Exchanges, 2002, 7: 9-11
[14]  1 Hadley G. Concerning the cause of the general trade-winds. Phil Trans Roy Soc, 1735, 39: 58-62??
[15]  2 Hou Y. Hadley circulation as a modulator of the extratropical climate. J Atmos Sci, 1998, 55: 2437-2457??
[16]  3 Zhou B, Cui X. Hadley circulation signal in the tropical cyclone frequency over the western North Pacific. J Geophys Res, 2008, 113, doi: 10.1029/2007JD009156
[17]  4 周波涛, 崔绚. Hadley环流异常对西北太平洋热带气旋频数影响的数值模拟试验. 地球物理学报, 2009, 52: 2958-2963
[18]  5 Zhou B, Wang H. Relationship between the boreal spring Hadley circulation and the summer precipitation in the Yangtze River valley. J Geophys Res, 2006, 111, doi: 10.1029/2005JD0070006
[19]  6 Hu Y, Fu Q. Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys, 2007, 19: 5229-5236
[20]  7 Johanson C, Fu Q. Hadley cell widening: Model simulations versus observations. J Clim, 2009, 22: 2713-2725??
[21]  8 Hu Y, Zhou C, Liu J. Observational evidence for poleward expansion of the hadley circulation. Adv Atmos Sci, 2011, 28: 33-44??
[22]  9 Quan X W, Diaz H F, Hoerling M P. Changes in the tropical Hadley cell since 1950. In: Dias H F, Bradley R S, eds. Hadley Circulation: Present, Past and Future. Netherlands: Springer, 2004. 85-120
[23]  10 周波涛, 王会军. Hadley环流的年际和年代际变化特征及其与热带海温的关系. 地球物理学报, 2006, 49: 1271-1278
[24]  11 周波涛, 王会军, 崔绚. Hadley环流与北太平洋涛动的显著关系. 地球物理学报, 2008, 51: 999-1006
[25]  12 马杰, 李建平. 冬季北半球Hadley环流圈的增强及其与ENSO关系. 自然科学进展, 2007, 17: 1524-1531
[26]  13 冯然, 李建平, 王金成. 北半球夏季Hadley环流的主导模态及其变率. 大气科学, 2011, 35: 201-206
[27]  14 Mitas C, Clement A. Has the Hadley cell been strengthening in recent decades? Geophys Res Lett, 2005, 32: L03809, doi: 10.1029/ 2004GL021765
[28]  15 Inoue T, Matsumoto J. A comparison of summer sea level pressure over East Eurasia between NCEP-NCAR reanalysis and ERA-40 for the period 1960-99. J Meteorol Soc Jpn, 2004, 82: 951-958??
[29]  16 徐影, 丁一汇, 赵宗慈. 美国NCEP_NCAR近50年全球再分析资料在我国气候变化研究中可信度的初步分析. 应用气象学报, 2001, 12: 337-347
[30]  17 Wu R, Kinter J, Kirtman B. Discrepancy of interdecadal changes in the Asian region among the NCEP-NCAR reanalysis,objective analyses, and bservations. J Clim, 2005, 18: 3048-3067??
[31]  48 Grimm M, Barros V, Doyle E. Climate Variability in Southern South America Associated with El Ni?o and La Ni?a Events. J Clim, 2000, 13: 35-58??
[32]  49 Wang B, Wu R, Fu X. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J Clim, 2000, 13: 1517-1536
[33]  50 Wang B, Zhang Q. Pacific-east Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Nino development. J Clim, 2002, 15: 3252-3265??
[34]  51 Xie S, Hu K, Hafner J, et al. Indian ocean capacitor effect on Indo-Western Pacific climate during the summer following El Nino. J Clim, 2009, 22: 730-747??
[35]  52 Wu B, Zhou T, Li T. Seasonally evolving dominant interannual variability modes of East Asian climate. J Clim, 2009, 22: 2992-3005??
[36]  53 Wu B, Li T, Zhou T. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the Western North Pacific anomalous anticyclone during the El Ni?o decaying summer. J Clim, 2010, 23: 2974-2986??
[37]  54 Li C, Xian P. Atmospheric anomalies related to interdecadal variability of SST in the North Pacific. Adv Atmos Sci, 2003, 20: 859-874??
[38]  55 Chang C, Zhang Y, Li T. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon. J Clim, 2000, 13: 4326-4340??
[39]  56 Huang B, Shukla J. Mechanisms for the interannual variability in the tropical Indian Ocean. Part I: The role of remote forcing from the tropical pacific. J Clim, 2007, 20: 2917-2936??
[40]  57 Huang B, Shukla J. Mechanisms for the interannual variability in the tropical Indian Ocean. Part II: Regional processes. J Clim, 2007, 20: 2937-2960??
[41]  58 Zhou T, Wu B, Wang B. How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon? J Clim, 2009, 22: 1159-1173
[42]  18 Zhou T, Zou L. Understanding the predictability of East Asian summer monsoon from the reproduction of land-sea thermal contrast change in AMIP-type simulation. J Clim, 2010, 23: 6009-6026??
[43]  19 Oort A H, Yienger J J. Observed interannual variability in the Hadley circulation and its connection to ENSO. J Clim, 1996, 9: 2751-2767??
[44]  20 Minobe S. Year-to-year variability in the Hadley and Walker circulations from NCEP/NCAR reanalysis data. In: Dias H F, Bradley R S, eds. Hadley Circulation: Present, Past and Future. Netherlands: Springer, 2004. 153-171
[45]  21 Ma J, Li J. The principal modes of variability of the boreal winter Hadley cell. Geophys Res Lett, 2008, 35: L01808, doi: 10.1029/ 2007GL031883??
[46]  22 Caballero R. Role of eddies in the interannual variability of Hadley cell strength. Geophys Res Lett, 2007, 34: L22705, doi: 10.1029/ 2007GL030971??
[47]  23 Xie P, Arkin P. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc, 1997, 78: 2539-2558??
[48]  24 Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc, 1996, 77: 437-471??
[49]  25 Rayner N A, Parker D E, Horton E B. Global analyses of sea surface temperature, sea-ice and night marine air temperature since the late nineteenth century. J Geophys Res, 2003, 108, doi: 10.1029/2002JD002670
[50]  26 王斌, 季仲贞. 大气科学中的数值新方法及其应用. 北京: 科学出版社, 2006. 171-205
[51]  27 李立娟, 王斌, 周天军. 外强迫因子对二十世纪全球变暖的综合影响. 科学通报, 2007, 52: 1820-1825
[52]  28 王斌. 863计划重点项目《地球系统模式中的高效并行算法研究与并行耦合器研制》2010~2011年研究进展. 中国科学院大气物理研究所学术年会. 2011年4月14~15日. 北京
[53]  29 Zhang G, McFarlane N. Sensitivity of climate simulations to the parameterization of cumulus convection in the canadian climate center general-circulation model. Atmos Ocean, 1995, 33: 407-446??
[54]  30 Zhang G, Mu M. Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3. J Geophys Res, 2005, 110, doi: 10.1029/2004JD005617
[55]  31 Rasch P, Kristjansson J. A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J Clim, 1998, 11: 1587-1614??
[56]  32 Zhang M, Lin W, Bretherton C, et al. A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model (CAM2). J Geophys Res, 2003, 108, doi: 10.1029/2002JD002523
[57]  33 Morrison H, Gettelman A. A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests. J Clim, 2008, 21: 3642-3659
[58]  34 Zhou T J, Yu R C, Zhang J, et al. Why the western Pacific subtropical high has extended westward since the late 1970s. J Clim, 2009, 22: 2199-2215??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133