全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青藏高原草地群落植物碳同位素组成与海拔梯度的关系

, PP. 120-130

Keywords: 青藏高原,群落水平,碳同位素组成,海拔趋势,影响因素

Full-Text   Cite this paper   Add to My Lib

Abstract:

?采用生物量加权法和直接测定法获得群落水平叶片和根系碳同位素组成(δ13C),进而探讨群落水平叶片和根系δ13C特征以及它们的海拔趋势,并调查叶片δ13C对随海拔变化的环境因子的响应,以确定影响叶片δ13C海拔趋势的主要驱动因子.研究发现,高寒草原植物叶片δ13C显著高于高寒草甸和温性草原;高寒草甸植物叶片的δ13C显著低于根系;整体上,叶片δ13C以0.60‰km-1的变化率随海拔升高而增大,这低于在物种水平上得到的变化率,而根系δ13C与海拔无相关关系.大气压强是引起叶片δ13C随海拔变化的主要驱动因素,降水和温度的影响较小.

References

[1]  5 Kogami H, Hanba Y, Kibe T, et al. CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatumleaves from low and high altitudes. Plant Cell Enviro, 2001, 24: 529-538??
[2]  6 Zhu Y, Siegwolf R T W, Durka W, et al. Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia, 2010, 162: 853-863??
[3]  7 李嘉竹, 王国安, 刘贤赵, 等. 贡嘎山东坡C3 植物碳同位素组成及C4 植物分布沿海拔高度的变化. 中国科学D 辑: 地球科学, 2009,39: 1387-1396
[4]  8 van de Water P K, Leavitt S W, Betancourt J L. Leaf δ13C variability with elevation, slope aspect, and precipitation in the southwest UnitedStates. Oecologia, 2002, 132: 332-343??
[5]  9 K?rner C. The use of ‘altitude’ in ecological research. Trends Ecol Evol, 2007, 22: 569-574??
[6]  1 Farquhar G D, Richards R A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct PlantBiol, 1984, 11: 539-552
[7]  2 Condon A G, Richards R A, Rebetzke G J, et al. Improving intrinsic water-use efficiency and crop yield. Crop Sci, 2002, 42: 122-131??
[8]  3 Guo G, Xie G. The relationship between plant stable carbon isotope composition, precipitation and satellite data, Tibet Plateau, China. QuatInt, 2006, 144: 68-71
[9]  4 K?rner C, Farquhar G, Wong S. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia, 1991, 88:30-40??
[10]  18 Jones H G. Plants and Microclimate. Cambridge: Cambridge University Press, 1983
[11]  19 O’Leary M. Carbon isotope fractionation in plants. Phytochemistry, 1981, 20: 553-567??
[12]  20 廖国藩, 贾幼玲. 中国草地资源. 北京: 中国科学技术出版社, 1996
[13]  21 Zhou Y, Fan J, Zhang W, et al. Factors influencing altitudinal patterns of C3 plant foliar carbon isotope composition of grasslands on theQinghai-Tibet Plateau, China. Alp Botany, 2011, 121: 79-90??
[14]  22 方晓娟, 李吉跃, 聂立水, 等. 毛白杨杂种无性系稳定碳同位素值的特征及其水分利用效率. 生态环境学报, 2009, 18: 2267-2271
[15]  23 冯虎元, 陈拓, 徐世健, 等. UV-B 辐射对大豆生长、产量和稳定碳同位素组成的影响. 植物学报, 2001, 43: 709-713
[16]  10 旺罗, 吕厚远, 吴乃琴, 等. 青藏高原现生禾本科植物的δ13C 与海拔高度的关系. 第四纪研究, 2003, 23: 573-580
[17]  11 刘光琇, 陈拓, 安黎哲, 等. 青藏高原北部植物叶片碳同位素组成特征的环境意义. 地球科学进展, 2004, 19: 749-753
[18]  12 冯虎元, 安黎哲, 陈拓, 等. 马先蒿属(Pedicularis L.)植物稳定碳同位素组成与环境因子之间的关系. 冰川冻土, 2003, 25: 88-93
[19]  13 陈芃娜, 王国安, 韩家懋, 等. 贡嘎山东坡植物和土壤有机质的δ13C 差异. 科学通报, 2009, 54: 3512-3520
[20]  14 Schulze E, Turner N, Nicolle D, et al. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus speciesacross a rainfall gradient in Australia. Tree Physiol, 2006, 26: 479-492??
[21]  15 Berry S L, Roderick M L. Gross primary productivity and transpiration flux of the Australian vegetation from 1788 to 1988 AD: Effects ofCO2 and land use change. Global Change Biol, 2004, 10: 1884-1898??
[22]  16 于贵瑞, 何洪林, 刘新安. 中国陆地生态系统空间化信息研究图集气候要素分卷. 北京: 气象出版社, 2004
[23]  17 任继周, 胡自治, 牟新待. 我国草原类型第一级分类的生物气候指标. 甘肃农业大学学报, 1965, (2): 48-64
[24]  33 Hultine K R, Marshall J D. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia, 2000, 123: 32-40??
[25]  34 Morecroft M D, Woodward F I. Experimental investigations on the environmental determination of δ13C at different altitudes. J Exp Bot,1990, 41: 1303-1308??
[26]  35 Li M C, Liu H Y, Li L X, et al. Carbon isotope composition of plants along altitudinal gradient and its relationship to environmental factorson the Qinghai-Tibet Plateau. Pol J Ecol, 2007, 55: 67-78
[27]  36 Schleser G, Helle G, Lucke A, et al. Isotope signals as climate proxies: The role of transfer functions in the study of terrestrial archives.Quat Sci Rev, 1999, 18: 927-943??
[28]  37 Li Y B, Chen T, Zhang Y F, et al. The relation of seasonal pattern in stable carbon compositions to meteorological variables in the leaves of Sabina przewalskii Kom. And Sabina chinensis (Lin.) Ant Environ Geol, 2007, 51: 1279-1284??
[29]  38 Loader N J, Hemming D L. Spatial variation in pollen δ13C correlates with temperature and seasonal development timing. Holocene, 2001,11: 587-592??
[30]  24 Zhao B, Kondo M, Maeda M, et al. Water-use efficiency and carbon isotope discrimination in two cultivars of upland rice during differentdevelopmental stages under three water regimes. Plant Soil, 2004, 261: 61-75??
[31]  25 Dungait J A J, Docherty G, Straker V, et al. Interspecific variation in bulk tissue, fatty acid and monosaccharide δ13C values of leaves from amesotrophic grassland plant community. Phytochemistry, 2008, 69: 2041-2051
[32]  26 Winkler F, Wirth E, Latzko E, et al. Influence of growth conditions and development on δ13C values in different organs and constituents ofwheat, oat and maize. J Plant Physiol, 1978, 87: 255-263
[33]  27 Hobbie E A. Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: A review and synthesis. New Phytol,2004, 161: 371-385
[34]  28 Leavitt S, Long A. Stable carbon isotope variability in tree foliage and wood. Ecology, 1986, 67: 1002-1010??
[35]  29 韩兴国, 严昌荣, 陈灵芝, 等. 暖温带地区几种木本植物碳稳定同位素的特点. 应用生态学报, 2000, 11: 497-500
[36]  30 Cao S K, Feng Q, Si J H, et al. Relationships between foliar carbon isotope discrimination with potassium concentration and ash content ofthe riparian plants in the extreme arid region of China. Photosynthetica, 2009, 47: 499-509??
[37]  31 K?rner C, Farquhar G D, Roksandic Z. A global survey of carbon isotope discrimination in plants from high-altitude. Oecologia, 1988, 74:623-632??
[38]  32 Li C Y, Wu C C, Duan B L, et al. Age-related nutrient content and carbon isotope composition in the leaves and branches of Quercusaquifolioides along an altitudinal gradient. Trees-Struct Funct, 2009, 23: 1109-1121??
[39]  39 Saurer M, Siegenthaler U, Schweingruber F. The climate carbon isotope relationship in tree rings and the significance of site conditions.Tell Ser B-Chem Phys Meteorol, 1995, 47: 320-330??
[40]  40 Zheng S, Shangguan Z. Spatial patterns of foliar stable carbon isotope compositions of C3 plant species in the Loess Plateau of China. EcolRes, 2007, 22: 342-353
[41]  41 Sheu D, Chiu C. Evaluation of cellulose extraction procedures for stable carbon isotope measurement in tree ring research. Int J EnvironAnal Chem, 1995, 59: 59-67??
[42]  42 Morecroft M D, Woodward F I, Marrs R H. Altitudinal trends in leaf nutrient contents, leaf size and δ13C of Alchemilla alpina. Funct Ecol,1992, 6: 730-740
[43]  43 Llorens L, Osborne C P, Beerling D J. Water-use responses of ‘living fossil’ conifers to CO2 enrichment in a simulated Cretaceous polarenvironment. Ann Bot, 2009, 104: 179-188??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133