全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

角闪石变形变质过程及其变形机制—以山西恒山地区斜长角闪岩为例

, PP. 52-60

Keywords: 角闪石,颗粒边界滑移,山西恒山,变质变形演化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?山西恒山变质岩中斜长角闪岩经历了复杂的变质变形过程,为角闪石塑性变形提供了深入研究的契机.本文通过对变形角闪石样品的显微构造观察、电子探针分析和变形条件估算确定恒山地区斜长角闪岩的变质变形过程可分为二个阶段:(1)变质反应(~775℃,0.585GPa),原岩辉长岩中辉石退变为角闪石,形成近等粒状角闪石冠状体;(2)局部韧性剪切变形过程(650~679℃,0.770~0.914GPa),近等粒状新生角闪石和亚颗粒旋转斜长石发生递进变形,形成角闪石集合体残斑结构和强定向排列等变形组构,应变量>1000%.进一步的EBSD组构和TEM亚微构造分析,发现递进变形过程中等粒状角闪石和斜长石颗粒内部位错等亚微构造发育微弱,在组构极密投影图上仅在强变形部位出现{100}<001>滑移系的优选,新生等粒状角闪石集合体由残斑结构变形为强定向排列组构的过程中发生了超塑性流动,其变形机制以颗粒边界滑移为主.

References

[1]  1 Brodie K H, Rutter E. On the relationship between deformation and metamorphism with special reference to the behaviour of basic rocks. In: Thompson A B, Rubie D C, eds. Metamorphic Reactions: Kinematics, Textures, and Deformation. Berlin: Springer, 1985. 138-179
[2]  2 Barruol G, Kern H. Seismic anisotropy and shear-wave splitting in low-crustal and upper-mantle rocks from the Ivrea Zone—Experimental and calculated data. Phys Earth Planet Inter, 1996, 95: 175-194??
[3]  3 Drury M R, Ural J. Deformation-related recrystallization processes. Tectonophysics, 1990, 172: 235-253??
[4]  4 Stünitz H. Transition from fracturing to viscous flow in a naturally deformed metagabbro. In: Boland J N, Fitz Gerald J D, eds. Defects and Processes in the Solid State: Geoscience Applications. Amsterdam: Elsevier, 1993. 121-150
[5]  5 Berger A, Stünitz H. Deformation mechanisms and reaction of hornblende: Examples from the Bergell tonalite (Central Alps). Tectonophysics, 1996, 257: 149-174??
[6]  6 De Meer S, Drury M R, De Bresser J H P, et al. Deformation Mechanisms, Rheology and Tectonics: Current Issues and New Developments in Deformation Mechanisms, Rheology and Tectonics. London: Geol Soc Spec Publ, 2002. 200
[7]  7 Kitamura K. Constraint of lattice-preferred orientation (LPO) on Vp anisotropy of amphibole-rich rocks. Geophys J Int, 2006, 165: 1058-1065??
[8]  8 Díaz Azpiroz M, Lloyd G E, Fernández C. Development of lattice preferred orientation in clinoamphiboles deformed under low-pressure metamorphic conditions—A SEM/EBSD study of metabasites from the Aracena metamorphic belt (SW Spain). J Struct Geol, 2007, 29: 629-645.??
[9]  9 Tatham D J, Lloyd G E, Butler R W H. Amphibole and lower crustal seismic properties. Earth Planet Sci Lett, 2008, 267: 118-128??
[10]  10 Tullis J. Deformation of feldspars. In: Ribbe P H, ed. Reviews in Mineralogy—Feldspar Mineralogy. Mineral Soc Amer, 1983, 2: 297-323
[11]  11 Passchier W C, Trouw R A J. Microtectonics. Berlin: Springer, 2005. 60-61
[12]  12 Imon R, Okudaira T, Fujimoto A. Dissolution and precipitation processes in deformed amphibolites: An example from the ductile shear zone of the Ryoke metamorphic belt, SW Japan. J Metamorph Geol, 2002, 20: 297-308??
[13]  13 Imon R, Okudaira T, Kanagawa K. Development of shape- and lattice-preferred orientations of amphibole grains during initial cataclastic deformation and subsequent deformation by dissolution-precipitation creep in amphibolites from the Ryoke metamorphic belt, SW Japan. J Struct Geol, 2004, 26: 793-805??
[14]  14 Rooney T P, Riecker R E, Gavasci A T. Hornblende deformation features. Geology, 1975, 3: 364-366??
[15]  15 Morrison-Smith D J. Transmission electron microscopy of experimentally deformed hornblende. Am Mineral, 1976, 61: 272-280
[16]  16 Dollinger G, Blacic J D. Deformation mechanisms in experimentally and naturally deformed amphiboles. Earth Planet Sci Lett, 1975, 26: 409-416??
[17]  17 Biermann C. (100) deformation twins in naturally deformed amphiboles. Nature, 1981, 292: 821-823??
[18]  18 Hacker B, Christie J M. Brittle/ductile and plastic/cataclastic transition in experimentally deformed and metamorphosed amphibolite. In: Duba A G, Durham W B, Handie J W, et al, eds. The Brittle-Ductile Transition in Rocks. AGU Geophys Monogr Ser, 1990, 56: 127-148??
[19]  19 纪沫, 胡玲, 刘俊来, 等. 主要造岩矿物的动态重结晶及其变质条件. 地学前缘. 2008, 15: 226-233
[20]  20 Boullier A M, Guéguen Y. SP-Mylonites: Origin of some mylonites by superplastic flow. Contrib Mineral Petrol, 1975, 50: 93-104??
[21]  21 田永清. 五台山-恒山绿岩带地质及金的成矿作用. 太原: 山西科技出版社, 1991. 5-7
[22]  22 苗培森. 恒山中深变质岩区构造样式. 天津: 天津科学技术出版社, 2003, 5-30
[23]  23 王凯怡, 郝杰, Wilde S A, 等. 山西五台山-恒山地区晚太古-早元古代若干关键地质问题的再认识: 颗粒锆石离子探针质谱年龄提出的地质制约. 地质科学, 2000, 35: 175-184
[24]  24 Wield S A. SHRIMP U-Pb zircon ages of the Wutai Complex. In: Kr?ner A, Zhao G C, et al, eds. A Late Archaean to Paleoproterozoic Lower to Upper Crustal Section in the Hengshan-Wutaishan Area of North China. Guidebook for Penrose Conference Field Trip. Beijing:Chinese Academy of Sciences, 2002. 32-34
[25]  25 郭敬辉, 翟明国, 李永刚, 等. 恒山西段石榴石角闪岩和麻粒岩的变质作用、PT轨迹及构造意义. 地质科学, 1999, 34: 311-325
[26]  26 Kaibysheva O A, Pshenichniuka A I, Astanin V V. Superplasticity resulting from cooperative grain boundary sliding. Acta Mater, 1998, 46: 4911-4916??
[27]  27 Zelin M G, Krasilnikov N A, Valiev R Z, et al. On the microstructural aspects of the nonhomogeneity of superplastic deformation at the level of grain groups. Acta Mater, 1994, 42: 119-126??
[28]  28 Schmid S M. Microfabric studies as indicators of deformation mechanisms and flow laws operative in mountain building. In: Hsu K J, ed. Mountain Building Processes. London: Academic Press, 1982. 95-110
[29]  29 Rutter E H, Casey M, Burlini L. Preferred crystallographic orientation development during the plastic and superplastic flow of calcite rocks. J Struct Geol, 1994, 16: 1431-1446??
[30]  30 Boullier A M, Guéguen Y. Peridotite mylonite produced by superplastic flow. In: Snoke A, Tullis J, Todd V R, eds. Fault Related Rocks—A Photographic Atlas. New Jersey: Princeton University Press, 1998. 514-515
[31]  31 Hoshikuma A. Grain growth and superplasticity: Their implication to earth science. J Geol Soc JP, 1996, 102: 232-239??
[32]  32 靳是琴, 李鸿超. 成因矿物学概论. 长春: 吉林大学出版社, 1986. 221-222
[33]  33 Holland T, Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol, 1994, 116: 433-447??
[34]  34 Anderson L A, Smith D R. The effects of temperature and fO2 on the Al-in-hornblende barometer. Am Mineral, 1995, 80: 549-559
[35]  35 Gifkins R C. Grain boundary sliding and its accommodation during creep and superplasticity. Metall Mater Trans, 1976, 7A: 1225-1232??
[36]  36 White J C, White S H. On the structure of grain boundaries in tectonics. Tectonophysics, 1981, 78: 613-628??
[37]  37 Behrmann J H, Mainprice D. Deformation mechanisms in a high-temperature quartz feldspar mylonite: Evidence for superplastic flow in the lower continental crust. Tectonophysics, 1987, 140: 297-305??
[38]  38 Tullis J, Dell’Angelo L, Yund R A. Ductile shear zones from brittle precursors in feldspathic rocks: The role of dynamic recrystallization. In: Hobbs B E, Heard H C, eds. Mineral and Rock Deformation: Laboratory Studies. AGU Geophys Monogr Ser, 1990, 56: 67-81??
[39]  39 Flervoet T F, White S H. Quartz deformation in a very fine grained quartzo-feldspathic mylonite: A lack of evidence for dominant grain boundary sliding deformation. J Struct Geol, 1995, 17: 1095-1109??
[40]  40 Fliervoet T F, White S H, Drury M R. Evidence for dominant grain-boundary sliding deformation in greenschist- and amphi-bolite-grade polymineralic ultramylonites from the Redbank Defor Maed Zone, Central Australia. J Struct Geol, 1997, 19: 1495-1520??
[41]  41 Hanmer S. Matrix mosaics, brittle deformation, and elongate porphyroclasts: Granulite facies microstructures in the Striding-Athabasca mylonite zone, western Canada. J Struct Geol, 2000, 22: 947-967??
[42]  42 Brodie K H. Retrogressive mylonitic metabasic fault rocks. In: Snoke A, Tullis J, Todd V R, eds. Fault Related Rocks—A Photographic Atlas. New Jersey: Princeton University Press, 1998. 402-403
[43]  43 Poirier J P. Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals. Cambridge: Cambridge University Press, 1985. 276
[44]  44 胡玲. 显微构造地质学概论. 北京: 地质出版社, 1998. 46-47
[45]  45 Vauchez A. Ribbon texture and deformation mechanisms of quartz in a mylonitized granite of Great Kabylia (Algeria). Tectonophysics, 1980, 67: 1-12??
[46]  46 Behrmann J H. Crystal plasticity and superplasticity in quartzite: A natural example. Tectonophysics, 1985, 115: 101-129??
[47]  47 Behrmann J H, Mainprice D. Deformation mechanisms in a high-temperature quartz-feldspar mylonite: Evidence for superplastic flow in the lower continental crust. Tectonophysics, 1987, 140: 297-305??
[48]  48 Behrmann J H. Microstructure and fabric transition in calcite tectonics from the Sierra Alhamilla (Spain). Geol Rundsch, 1983, 72: 605-618??
[49]  49 Allison I, Barnett R L, Kerrich R. Superplasitic flow and changes in crystal chemistry of feldspar. Tectonophysics, 1979, 53: T41-T46??
[50]  50 Kleinschrodt R. Competing crystal-plastic and grain size sensitive deformation mechanisms in a peridotite from the Finero Complex (Ivrea Zone, NW-Italy). In: Bunge H J, Siegesmund S, Skrotzki W, et al, eds. Textures of Geological Materials. Oberured: DGM Infor- mationsgesellschaft-Verlag, 1994. 201-219
[51]  51 Ashby M F, Verrall R A. Diffusion-accommodated flow and superplasticity. Acta Metall, 1973, 21: 149-163??
[52]  52 罗震宇, 金振民. 岩石超塑性变形及其地球动力学意义综述. 地质科技情报. 2003, 22: 17-23

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133