32 Gruber D F, Simjouw J P, Seitzinger S P, et al. Dynamics and characterization of refractory dissolved organic matter produced by a purebacterial culture in an experimental predator-prey system. Appl Environ Microbiol, 2006, 72: 4184-4191??
34 Brophy J E, Carlson D J. Production of biologically refractory dissolved organic carbon by natural seawater microbial populations.Deep-Sea Res, 1989, 36: 497-507??
[4]
35 Stoderegger K, Herndl G J. Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton.Limnol Oceanogr, 1998, 42: 877-884
[5]
36 Benner R, Pakulski J D, McCarthy M, et al. Bulk chemical characteristics of dissolved organic matter in the ocean. Science, 1992, 255:1561-1564??
[6]
37 Aluwihare L I, Repeta D J, Chen R F. A major biopolymeric component to dissolved organic carbon in surface sea water. Nature, 1997,387: 166-169??
[7]
38 Aluwihare L I, Repeta D J, Chen R F. Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight. Deep-SeaRes Part II-Top Stud Oceanogr, 2002, 49: 4421-4437??
[8]
39 Kawasaki N, Benner R. Bacterial release of dissolved organic matter during cell growth and decline: Molecular origin and composition.Limnol Oceanogr, 2006, 51: 2170-2180??
[9]
40 Kaiser K, Benner R. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr, 2008, 53:99-112??
[10]
41 Matsumoto M, Homma H, Long Z, et al. Occurrence of free D-amino acids and aspartate racemases in hyperthermophilic Archaea. JBacteriol, 1999, 181: 6560-6563
[11]
42 Lam H, Oh D C, Cava F, et al. D-Amino acids govern stationary phase cell wall remodeling in Bacteria. Science, 2009, 325: 1552-1555??
[12]
43 Amon R M W, Benner R. Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature, 1994, 369: 549-552??
[13]
44 Jiao N Z, Zheng Q. The microbial carbon pump: From genes to ecosystems. Appl Environ Microbiol, 2011, 77: 7439-7444??
[14]
45 Li C, Yao X, Lu C D. Regulation of the dauBAR operon and characterization of D-amino acid dehydrogenase DauA in arginine and lysinecatabolism of Pseudomonas aeruginosa PAO1. Microbiology, 2010, 156: 60-71??
[15]
46 Qin G, Zhu L, Chen X, et al. Structural characterization and ecological roles of a novel exopolysaccharide from the deep-seapsychrotolerant bacterium Pseudoalteromonas sp. SM9913. Microbiology, 2007, 153: 1566-1572
[16]
47 Flemming H C, Wingender J. The biofilm matrix. Nat Rev Microbiol, 2010, 8: 623-633
[17]
48 Wang X, Kim Y, Hong S H, et al. Antitoxin MqsA helps mediate the bacterial general stress response. Nat Chem Biol, 2011, 7: 359-366??
[18]
49 Wang X, Wood T K. Toxin/antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl EnvironMicrobiol, 2011, 77: 5577-5583
[19]
50 Alldredge A L, Silver M W. Characteristics, dynamics and significance of marine snow. Prog Oceanogr, 1988, 20: 41-82??
[20]
51 Danovaro R, Fonda U S, Pusceddu A. Climate change and the potential spreading of marine mucilage and mcrobial pathogens in theMediterranean Sea. PLoS ONE, 2009, 4: e7006??
[21]
52 Gram L, Grossart H P, Schlingloff A, et al. Possible quorum sensing inmarine snow bacteria: Production of acylated homoserine lactonesby Roseobacter strains isolated frommarine snow. Appl Environ Microbiol, 2002, 68: 4111-4116??
[22]
53 Kolodkin-Gal I, Romero D, Cao S, et al. D-amino acids trigger biofilm disassembly. Science, 2010, 328: 627-629??
[23]
54 Heissenberger A, Leppard G G, Herndl G J. Relationship between the intracellular integrity and the morphology of the capsular envelope inattached and free-living marine bacteria. Appl Environ Microbiol, 1996, 62: 4521-4528
[24]
55 Venter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304: 66-74??
[25]
56 Rusch D B, Halpern A L, Sutton G, et al. The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through eastern tropicalPacific. PLoS Biol, 2007, 5: e77??
[26]
57 Gianoulis T A, Raes J, Patel P V, et al. Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc Natl Acad SciUSA, 2009, 106: 1374-1379??
[27]
58 Bergh ?, B?rsheim K Y, Bratbak G, et al. High abundance of viruses found in aquatic environments. Nature, 1989, 340: 467-468??
[28]
59 Suttle C A. Viruses in the sea. Nature, 2005, 437: 356-361??
[29]
60 Wommack K E, Colwell R R. Virioplankton: Viruses in aquatic ecosystems. Microbiol Mol Biol Rev, 2000, 64: 69-114??
[30]
61 Weinbauer M G. Ecology of prokaryotic viruses. FEMS Microbiol Rev, 2004, 28: 127-181??
[31]
62 Brussaard C P D, Wilhelm S W, Thingstad F, et al. Global-scale processes with a nanoscale drive: The role of marine viruses. ISME J,2008, 2: 575-578??
[32]
63 Thingstad T F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial virusesin aquatic systems. Limnol Oceanogr, 2000, 45: 1320-1328??
[33]
64 S?wstr?m C, Anesio M A, Graneli W, et al. Seasonal viral loop dynamics in two large ultraoligotrophic Antarctic freshwater lakes. MicrobEcol, 2007, 53: 1-11
[34]
65 Wilhelm S W, Suttle C A. Viruses and nutrient cycles in the sea. Bioscience, 1999, 49: 781-788??
[35]
66 Gobler C J, Hutchins D A, Fisher N S, et al. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte.Limnol Oceanogr, 1997, 42: 1492-1504??
[36]
67 Middelboe M, Riemann L, Steward G F, et al. Virus-induced transfer of organic carbon between marine bacteria in a model community.Aquat Microb Ecol, 2003, 33: 1-10??
[37]
68 J?rgensen N O G, Middelboe M. Occurrence and bacterial cycling of D amino acid isomers in an estuarine environment. Biogeochemistry,2006, 81: 77-94??
[38]
69 Jacquet S, Miki T, Noble R, et al. Viruses in aquatic ecosystems: Important advancements of the last 20 years and prospects for the futurein the field of microbial oceanography and limnology. Adv Oceanogr Limnol, 2010, 1: 71-101
[39]
70 Weinbauer M G, Rassoulzadegan F. Are viruses driving microbial diversification and diversity? Environ Microbiol, 2004, 6: 1-11
[40]
71 Winter C, Smit A, Herndl G J, et al. Impact of virioplankton on archaeal and bacterial community richness as assessed in seawater batchcultures. Appl Environ Microbiol, 2004, 70: 804-813??
[41]
72 Zhang R, Weinbauer M G, Qian P Y. Viruses and flagellates sustain apparent richness and reduce biomass accumulation ofbacterioplankton in coastal marine waters. Environ Microbiol, 2007, 9: 3008-3018??
[42]
73 Middelboe M, Jorgensen N, Kroer N. Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton.Appl Environ Microbiol, 1996, 62: 1991-1997
[43]
74 Middelboe M, Lyck P G. Regeneration of dissolved organic matter by viral lysis in marine microbial communities. Aquat Microb Ecol,2002, 27: 187-194??
[44]
75 Middelboe M. Microbial disease in the sea: Effects of viruses on marine carbon and nutrient cycling. In: Ostfeld R S, Keesing F, Eviner VT, eds. Infectious Disease Ecology: Effects of Ecosystems on Disease and of Diesease on Ecosystems. Princeton: Princeton UniversityPress, 2008. 242-259
[45]
76 Zhang Y, Zhang F, Yang J, et al. Host responses of a marine bacterium, Roseobacter denitrificans OCh114, to phage infection. ArchMicrobiol, 2012, 194: 323-330
[46]
77 Partensky F, Hess W R, Vaulot D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev,1999, 63: 106-127
[47]
78 Williamson S J, Rusch D B, Yooseph S, et al. The Sorcerer II Global Ocean Sampling Expedition: Metagenomic characterization of viruseswithin aquatic microbial samples. PLoS ONE, 2008, 3: e1456??
[48]
79 Sullivan M B, Huang K H, Ignacio-Espinoza J C, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-likemyoviruses from diverse hosts and environments. Environ Microbiol, 2010, 12: 3035-3056??
[49]
80 Breitbart M, Thompson L R, Suttle C A, et al. Exploring the vast diversity of marine viruses. Oceanography, 2007, 20: 135-139
[50]
81 Lindell D, Jaffe J D, Johnson Z I, et al. Photosynthesis genes in marine viruses yield proteins during host infection. Nature, 2005, 438:86-89??
[51]
82 Sharon I, Alperovitch A, Rohwer F, et al. Photosystem I gene cassettes are present in marine virus genomes. Nature, 2009, 461: 258-262??
[52]
83 Philosof A, Battchikova N, Aro E M, et al. Marine cyanophages: Tinkering with the electron transport chain. ISME J, 2011, 5: 1568-1570??
[53]
84 Sharon I, Battchikova N, Aro E M, et al. Comparative metagenomics of microbial traits within oceanic viral communities. ISME J, 2011, 5:1178-1190??
[54]
85 Dammeyer T, Bagby S C, Sullivan M B, et al. Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Curr Biol, 2008, 18:442-448??
[55]
86 Sullivan M B, Coleman M L, Weigele P, et al. Three Prochlorococcus cyanophage genomes: Signature features and ecologicalinterpretations. PLoS Biol, 2005, 3: e144??
[56]
87 Thompson L R, Zeng Q, Kelly L, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. ProcNatl Acad Sci USA, 2011, 108: E757-E764??
[57]
88 Biddanda B, Benner R. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter bymarine phytoplankton. Limnol Oceanogr, 1997, 42: 506-518??
[58]
89 Williams P J L B. Heterotrophic bacteria and the dynamics of dissolved organic material. In: Kirchman D L, ed. Microbial Ecology of theOceans. New York: Wiley-Liss, 2000. 153-199
[59]
90 Teira E, Serret P, Fernandez E. Phytoplankton size-structure, particulate and dissolved organic carbon production and oxygen fluxesthrough microbial communities in the NW Iberian coastal transition zone. Mar Ecol-Progr Ser, 2001, 219: 65-83??
[60]
91 Meon B, Kirchman D L. Dynamics and molecular composition of dissolved organic material during experimental phytoplankton blooms.Mar Chem, 2001, 75: 185-199??
[61]
92 Azam E, Fenchel T, Field J G, et al. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser, 1983, 10: 257-263??
[62]
93 Obernosterer I, Christaki U, Lefevre D, et al. Rapid bacterial mineralization of organic carbon produced during a phytoplankton bloominduced by natural iron fertilization in the Southern Ocean. Deep-Sea Res Part II-Top Stud Oceanogr, 2008, 55: 777-789??
[63]
94 Banse K. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In: Falkowski P G,Woodhead A R, eds. Primary Productivity and Biogeochemical Cycles in the Sea. Heildberg: Springer, 1992. 409-440
[64]
95 Sherr E B, Sherr B F. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek Inter J GeneralMolecul Microbiol, 2002, 81: 293-308??
[65]
96 Moller E F. Production of dissolved organic carbon by sloppy feeding in the copepods Acartia tonsa, Centropages typicus, and Temoralongicornis. Limnol Oceanogr, 2007, 52: 79-84??
[66]
97 Moller E F, Nielsen T G. Production of bacterial substrate by marine copepods: Effect of phytoplankton biomass and cell size. J PlanktonRes, 2001, 23: 527-536??
[67]
98 Roy S, Harris R I, Poulet S A. Inefficient feeding by Calanus rzelgolandicus and Temora longicornsis on Coscinodiscus wailesii:Quantitative estimation using chlorophylltype pigmems and effects on dissolved free amino acids. Mar Ecol Prog Ser, 1989, 52: 145-153??
[68]
119 White D C, Davis W M, Nickels J S, et al. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia,1979, 40: 51-62??
[69]
99 Moller E F, Thor P, Nielsen T G. Production of DOC by Calanus finmarchicus, C-glacialis and C-hyperboreus through sloppy feeding andleakage from fecal pellets. Mar Ecol-Progr Ser, 2003, 262: 185-191??
[70]
100 Saba G K, Steinberg D K, Bronk D A. The relative importance of sloppy feeding, excretion, and fecal pellet leaching in the release ofdissolved carbon and nitrogen by Acartia tonsa copepods. J Experiment Mar Biol Ecol, 2011, 404: 47-56??
[71]
101 Besiktepe S, Dam H G. Coupling of ingestion and defecation as a function of diet in the calanoid copepod Acartia tonsa. Mar Ecol-ProgrSer, 2002, 229: 151-164??
[72]
102 Thor P, Dam H G, Rogers D R. Fate of organic carbon released from decomposing copepod fecal pellets in relation to bacterial productionand ectoenzymatic activity. Aquat Microb Ecol, 2003, 33: 279-288??
[73]
103 Landry M R, Calbet A. Microzooplankton production in the oceans. J Mar Sci, 2004, 61: 501-507
[74]
104 Strom S L, Benner R, Ziegler S, et al. Planktonic grazers are a potentially important source of marine dissolved organic carbon. LimnolOceanogr, 1997, 42: 1364-1374
[75]
105 Azam F. Microbial control of oceanic carbon flux: The plot thickens. Science, 1998, 280: 694-696??
[76]
106 Weisse T. The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists. Antonie Van Leeuwenhoek Inter JGeneral Molecul Microbiol, 2002, 81: 327-341??
[77]
107 Fok A K, Lee Y, Allen R. The correlation of disgestive vacuole pH and size with the digestive cycle in Paramecium caudatum. J Protozool,1982, 29: 409-414
[78]
108 Nagata T, Kirchman D L. Release of macromolecular organic-complexes by heterotrophic marine flagellates. Mar Ecol-Progr Ser, 1992, 83:233-240??
[79]
109 Koike I, Hara S, Terauchi K, et al. Role of sub-micrometre particles in the ocean. Nature, 1990, 345: 242-244??
[80]
110 Kujawinski E B, Del Vecchio R, Blough N V, et al. Probing molecular-level transformations of dissolved organic matter: Insights onphotochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonancemass spectrometry. Mar Chem, 2004, 92: 23-37??
[81]
111 González J M, Suttle C A. Grazing by marine nanoflagellates on viruses and virus-sized particles: Ingestion and digestion. Mar Ecol ProgSer, 1993, 94: 1-10??
[82]
112 Jiao N, Zhang Y, Zeng Y, et al. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in theglobal ocean. Environ Microbiol, 2007, 9: 3091-3099??
[83]
113 Zhang Y, Jiao N. Dynamics of aerobic anoxygenic phototrophic bacteria in the East China Sea. FEMS Microbiol Ecol, 2007, 61: 459-469??
[84]
114 Herndl G J, Reinthaler T, Teira E, et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl EnvironMicrobiol, 2005, 72: 2303-2309
[85]
115 Zhang Y, Sintes E, Chen J, et al. Role of mesoscale cyclonic eddies in the distribution and activity of Archaea and Bacteria in the South China Sea. Aquat Microb Ecol, 2009, 56: 65-79??
[86]
116 He Z L, Deng Y, Van Nostrand J D, et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structureand functional activity. ISME J, 2010, 4: 1167-1179
[87]
117 Cottrell M T, Kirchman D L. Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation)in the Delaware estuary. Limnol Oceanogr, 2003, 48: 168-178??
[88]
118 Radajewski S, Ineson P, Parekh N R, et al. Stable-isotope probing as a tool in microbial ecology. Nature, 2000, 403: 646-649??
[89]
120 De Rosa M, Gambacorta A, Gliozzi A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev,1986, 50: 70-80
[90]
121 White D C, Flemming C A, Leung K T, et al. In situ microbial ecology for quantitative appraisal, monitoring, and risk assessment ofpollution remediation in soils, the subsurface, the rhizosphere and in biofilms. J Microbiol Meth, 1998, 32: 93-105??
[91]
122 Suzumura M. Phospholipids in marine environments: A review. Talanta, 2005, 66: 422-434??
[92]
123 Findlay R H, White D C. Polymeric beta-hydroxyalkanoates from environmental-samples and bacillus-megaterium. Appl EnvironMicrobiol, 1983, 45: 71-78
[93]
124 Hedrick D B, White D C. Microbial respiratory quinones in the environment. 1. A sensitive liquid-chromatographic method. J MicrobiolMeth, 1986, 5: 243-254
[94]
125 Villanueva L, Navarrete A, Urmeneta J, et al. Monitoring diel variations of physiological status and bacterial diversity in an estuarinemicrobial mat: An integrated biomarker analysis. Microb Ecol, 2007, 54: 523-531??
[95]
126 Zhang C L, Fouke B W, Bonheyo G T, et al. Lipid biomarkers and carbon-isotopes of modern travertine deposits (Yellowstone NationalPark, USA): Implications for biogeochemical dynamics in hot-spring systems. Geochim Cosmochim Acta, 2004, 68: 3157-3169??
[96]
127 Zhang X N, Gillespie A L, Sessions A L. Large D/H variations in bacterial lipids reflect central metabolic pathways. Proc Natl Acad SciUSA, 2009, 106: 12580-12586??
[97]
128 Logan G A, Hayes J M, Hieshima G B, et al. Terminal Proterozoic reorganization of biogeochemical cycles. Nature, 1995, 376: 53-56??
[98]
129 Keil R G, Fogel M L. Reworking of amino acid in marine sediments: Stable carbon isotopic composition of amino acids in sediments alongthe Washington coast. Limnol Oceanogr, 2001, 46: 14-23??
[99]
130 Scott J H, O’Brien D M, Emerson D, et al. An examination of the carbon isotope effects associated with amino acid biosynthesis.Astrobiology, 2006, 6: 867-880??
[100]
131 McCarthy M D, Benner R, Lee C, et al. Amino acid carbon isotopic fractionation patterns in oceanic dissolved organic matter: Anunaltered photoautotrophic source for dissolved organic nitrogen in the ocean? Mar Chem, 2004, 92: 123-134
[101]
132 Zhang C L L. Stable carbon isotopes of lipid biomarkers: Analysis of metabolites and metabolic fates of environmental microorganisms.Curr Opin Biotechnol, 2002, 13: 25-30??
[102]
133 Hopmans E C, Weijers J W H, Schefuss E, et al. A novel proxy for terrestrial organic matter in sediments based on branched andisoprenoid tetraether lipids. Earth Planet Sci Lett, 2004, 224: 107-116??
[103]
134 Eglinton T I, Eglinton G. Molecular proxies for paleoclimatology. Earth Planet Sci Lett, 2008, 275: 1-16??
[104]
135 Lipp J S, Morono Y, Inagaki F, et al. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 2008,454: 991-994??
[105]
136 Damste J S S, Schouten S, Hopmans E C, et al. Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membranelipid of cosmopolitan pelagic crenarchaeota. J Lipid Res, 2002, 43: 1641-1651??
[106]
137 Guckert J B, Antworth C P, Nichols P D, et al. Phospholopid, ester-linked fatty-acid profiles as reproducible assays for changes inprokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol, 1985, 31: 147-158
[107]
138 Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions.Geochim Cosmochim Acta, 1988, 52: 2303-2310??
[108]
139 Schouten S, Hopmans E C, Schefuss E, et al. Distributional variations in marine crenarchaeotal membrane lipids: A new tool forreconstructing ancient sea water temperatures? Earth Planet Sci Lett, 2002, 204: 265-274
[109]
140 Dang H Y, Lovell C R. Seasonal dynamics of particle-associated and free-living marine Proteobacteria in a salt marsh tidal creek asdetermined using fluorescence in situ hybridization. Environ Microbiol, 2002, 4: 287-295??
[110]
141 Pinckney J L, Paerl H W, Tester P, et al. The role of nutrient loading and eutrophication in estuarine ecology. Environ Health Perspect,2001, 109: 699-706
[111]
142 Dang H Y, Chen R P, Wang L, et al. Environmental factors shape sediment anammox bacterial communities in hypernutrified JiaozhouBay, China. Appl Environ Microbiol, 2010, 76: 7036-7047??
[112]
143 Jiao N Z, Tang K, Cai H Y, et al. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nature RevMicrobiol, 2011, 9: 75-76
[113]
144 Libes S M. Introduction to Marine Biogeochemistry. 2nd ed. Amsterdam, Boston: Academic Press, 2009
[114]
145 Moore T S, Mullaugh K M, Holyoke R R, et al. Marine chemical technology and sensors for marine waters: Potentials and limits. Ann RevMar Sci, 2009, 1: 91-115
[115]
146 Robinson C, Williams P. Respiration and its measurement in surface marine waters. In: del Giorgio PA, Williams P, eds. Respiration inAquatic Ecosystems. Oxford: Oxford University Press, 2005. 147-160
[116]
147 Carlson C A, del Giorgio P A, Herndl G J. Microbes and the dissipation of energy and respiration: From cells to ecosystems. Oceanography,2007, 20: 89-100??
[117]
148 Robinson C, Ramaiah N. Microbial heterotrophic metabolic rates constrain the microbial carbon pump. In: Jiao N Z, Azam F, Sanders S,eds. Microbial Carbon Pump in the Ocean. Washington DC: Science/AAAS, 2011. 52-53
[118]
149 Martínez-García S, Fernández E, Aranguren-Gassis M, et al. In vivo electron transport system activity: A method to estimate respiration innatural marine microbial planktonic communities. Limnol Oceanogr-Methods, 2009, 7: 459-469??
[119]
150 Dang H Y, Lovell C R. Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization ofsubmerged surfaces in coastal marine waters as determined by 16S ribosomal DNA sequence analysis and fluorescence in situhybridization. Appl Environ Microbiol, 2002, 68: 496-504??
[120]
151 Ryuda N, Hashimoto T, Ueno D, et al. Visualization and direct counting of individual denitrifying bacterial cells in soil by nirK-targeteddirect in situ PCR. Microbes Environ, 2011, 26: 74-80??
[121]
152 Bartley J K, Kah L C. Marine carbon reservoir, C-org-C-carb coupling, and the evolution of the Proterozoic carbon cycle. Geology, 2004,32: 129-132??
[122]
153 Ridgwell A. Evolution of the ocean’s “biological pump”. Proc Natl Acad Sci USA, 2011, 108: 16485-16486??
[123]
154 Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran Ocean. Nature, 2006, 444: 744-747??
[124]
155 McFadden K A, Huang J, Chu X, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl AcadSci USA, 2008, 105: 3197-3202??
[125]
156 Swanson-Hysell N L, Rose C V, Calmet C C, et al. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science, 2010, 328:608-611??
[126]
157 Bjerrum C J, Canfield D E. Towards a quantitative understanding of the late Neoproterozoic carbon cycle. Proc Natl Acad Sci USA, 2011,108: 5542-5547??
[127]
158 Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran Ocean. Science, 2010, 328: 80-83??
[128]
1 Azam F, Smith D C, Steward G F, et al. Bacteria-organic matter coupling and its significance for oceanic carbon cycling. Microb Ecol,1993, 28: 167-179
[129]
2 Copley J. All at sea. Nature, 2002, 415: 572-574??
[130]
3 Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nature Rev Microbiol, 2007, 5: 782-791??
[131]
4 Riebesell U. Enhanced biological carbon consumption in a high CO2 ocean. Nature, 2007, 450: 545-548??
[132]
5 Suttle C A. Marine viruses—Major players in the global ecosystem. Nature Rev Microbiol, 2007, 5: 801-812??
[133]
6 Mou X Z, Sun S L, Edwards R A, et al. Bacterial carbon processing by generalist species in the coastal ocean. Nature, 2008, 451: 708-711??
[134]
7 Arrigo K R. Carbon cycle: Marine manipulations. Nature, 2007, 450: 491-492??
[135]
8 Bardgett R D, Freeman C, Ostle N J. Microbial contributions to climate change through carbon cycle feedbacks. ISME J, 2008, 2: 805-814??
[136]
9 Ingalls A E, Shah S R, Hansman R L, et al. Quantifying archaeal community autotrophy in the mesopelagic ocean using naturalradiocarbon. Proc Natl Acad Sci USA, 2006, 103: 6442-6447??
[137]
10 Wassmann P. Retention versus export food chains: Processes controlling sinking loss from marine pelagic systems. Hydrobiologia, 1998,363: 29-57
[138]
11 Gehlen M. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model.Biogeosciences, 2006, 3: 521-537??
[139]
12 Eppley R W, Peterson B J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 1979, 282: 677-680??
[140]
13 Ducklow H W, Steinberg D K, Buesseler K O. Upper ocean carbon export and the biological pump. Oceanography, 2001, 14: 50-58
[141]
14 Aristegui J, Gasol J M, Duarte C M, et al. Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr, 2009, 54:1501-1529??
[142]
15 Hansell D A, Carlson C A, Repeta D J, et al. Dissolved organic matter in the ocean: A controversy stimulates new insights. Oceanography,2009, 22: 52-61
[143]
16 Jiao N, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in theglobal ocean. Nature Rev Microbiol, 2010, 8: 593-599??
[144]
17 Reeburgh W S. Figures summarizing the global cycles of biogeochemically important elements. Bull Ecol Soc Am, 1997, 78: 260-267
[145]
18 Kirchman D L, Lancelot C, Fasham M, et al. Dissolved organic matter in biogeochemical models of the ocean. In: Evans G T, Fasham M J,eds. Towards a Model of Ocean Biogeochemical Processes. Berlin: Springer, 1993. 209-225
[146]
19 Carlson C A, Ducklow H W. Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescalevertical variation. Deep-Sea Res Part II-Top Stud Oceanogr, 1995, 42: 639-656
[147]
20 Eichinger M, Poggiale J C, Van Wambeke F, et al. Modelling DOC assimilation and bacterial growth efficiency in biodegradationexperiments: A case study in the Northeast Atlantic Ocean. Aquat Microb Ecol, 2006, 43: 139-151??
[148]
21 Hedges J I. Global biogeochemical cycles: Progress and problems. Mar Chem, 1992, 39: 67-93??
[149]
22 Falkowski P. The global carbon cycle: A test of our knowledge of earth as a system. Science, 2000, 290: 291-296??
[150]
23 Ogawa H, Tanoue E. Dissolved organic matter in oceanic waters. J Oceanogr, 2003, 59: 129-147??
[151]
24 Bauer J E, Williams P M, Druffel E R M. 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea.Nature, 1992, 357: 667-670??
[152]
25 McNichol A P, Aluwihare L I. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: Insights from studies ofdissolved and particulate organic carbon (DOC and POC). Chem Rev, 2007, 107: 443-466??
[153]
26 Rothman D H, Hayes J M, Summons R E. Dynamics of the Neoproterozoic carbon cycle. Proc Natl Acad Sci USA, 2003, 100: 8124-8129??
[154]
27 Grotzinger J P, Fike D A, Fischer W W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nature Geosci,2011, 4: 285-292??
[155]
28 Jiao N, Zhang C, Chen F, et al. Frontiers and technological advances in microbial processes and carbon cycling in the ocean. In: Mertens L,ed. Biological Oceanography Research Trends. New York: NOVA Science Publishers Inc, 2008. 217-267
[156]
29 焦念志. 海洋微型生物生态学. 北京: 科学出版社, 2006
[157]
30 Karl D M. Hidden in a sea of microbes. Nature, 2002, 415: 590-591
[158]
31 Ogawa H, Amagai Y, Koike I, et al. Production of refractory dissolved organic matter by bacteria. Science, 2001, 292: 917-920??