全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

全球变化科学卫星概念研究

DOI: 10.1007/s11430-013-4748-5, PP. 49-60

Keywords: 全球变化,敏感因子,对地观测,科学卫星

Full-Text   Cite this paper   Add to My Lib

Abstract:

?全球变化正在对人类生存与发展形成严峻挑战,空间对地观测技术的宏观、快速、准确特点使其成为全球变化现象观测的一种关键技术手段.我国是影响全球变化及受其影响最大的国家之一,目前尚无专门针对全球变化研究的科学卫星.发展全球变化科学卫星是我国的重要需求,也是对国际的贡献.在全球变化敏感因子的空间观测机理分析基础上,研究了全球变化科学卫星概念,继而提出发展由7类卫星组成的全球变化系列科学卫星的构想,以便从空间高度对全球环境变化现象实施科学观测.

References

[1]  Crisp D, Atlas R M, Breon F M, et al. 2004, The Orbiting Carbon Observatory (OCO) mission. Adv Space Res, 34: 700-709
[2]  Donkelaar A, Martin R V, Brauer M, et al. 2010. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ Health Perspect, 118: 847-855
[3]  Dubayah R, Drake J. 2000. Lidar remote sensing for forestry. J Forest, 98: 44-46
[4]  Ebuchi N, Abe H. 2012. Evaluation of sea surface salinity observed by Aquarius. IEEE Geosci Remote Sensing Symposium, 1: 5767-5769, doi: 10.1109/IGARSS.2012.6352300
[5]  Elvidge C D, Cinzano P, Pettit D R, et al. 2007. The nightsat mission concept. Int J Remote Sens, 28: 2645-2670
[6]  Englharta S, Keuck V, Siegert F. 2011. Aboveground biomass retrieval in tropical forests: The potential of combined X- and L-band SAR data use. Remote Sens Environ, 115: 1260-1271
[7]  Foley J A, DeFries R, Asener G P, et al. 2005. Global consequences of land use. Science, 306: 570-574
[8]  Fraser R S, Kaufman Y J. 1985. The relative importance of aerosol scattering and absorption in remote sensing. IEEE Trans Geosci Remote Sensing, 23: 625-633
[9]  Global Climate Observing System (GCOS). 2011. Systematic observation requirements for satellite-based data products for climate (2011 update). WMO, Geneva, Switzerland
[10]  Gong P, Liang S, Elizabeth J C, et al. 2012. Urbanisation and health in China. Lancet, 379: 843-852
[11]  Guang J, Xue Y, Lia Y J, et al. 2012. Retrieval of aerosol optical depth over bright land surfaces by coupling bidirectional reflectance distribution function model and aerosol retrieval model. Int J Remote Sens, 3: 577-584
[12]  Hajnsek I, Kugler F, Lee S K, et al. 2009. Tropical-Forest-Parameter estimation by means of Pol-InSAR: The INDREX-II Campaign. IEEE Trans Geosci Remote Sensing, 47: 481-493
[13]  Hajnsek I, Scheiber R, Ulander L, et al. 2008. BIOSAR 2007: Technical assistance for the development of airborne SAR and geophysical measurements during the BioSAR 2007 Experiment. ESA contract No. 20755/07/NL/CB (Final Report)
[14]  Houweling S, Breon F M, Aben I, et al. 2004. Inverse modeling of CO2 sources and sinks using satellite data: A synthetic inter-comparison of measurement techniques and their performance as a function of space and time. Atmos Chem Phys, 4: 523-538
[15]  Hungershoefer K, Breon F M, Peylin P, et al. 2010. Evaluation of various observing systems for the global monitoring of CO2 surface fluxes. Atmos Chem Phys, 10: 10503-10520
[16]  ICSU (International Council of Scientific Unions). 2011. Earth System Sustainability Initiative. ICSU Report, Paris
[17]  Kramer H J, Cracknell. 2008. An overview of small satellites in remote sensing. Int J Remote Sens, 29: 4285-4337
[18]  Lefsky M A, Harding D J, Keller M, et al. 2005. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett, 32: L22S02
[19]  Li Z Q, Niu F, Lee K H, et al. 2007. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. J Geophys Res-Atmosph, 112: D22S07, doi: 10.1029/2007JD008479
[20]  Li Z, Xing Q, Liu S, et al. 2012. Monitoring thickness and volume changes of the Dongkemadi ice field on the Qinghai-Tibetan Plateau (1969-2000) using Shuttle Radar Topography Mission and map data. Int J Digit Earth, 5: 516-532
[21]  Lukas R. 1990. The role of salinity in the dynamics and thermodynamics of the western Pacific warm pool. International TOGA Scientific Conference Proceedings, 379: 73-81
[22]  Means J E, Acker S A, Harding D J, et al. 1999. Use of large-footprint scanning airborne LiDAR to estimate forest stand characteristics in the Western Cascades of Oregon. Remote Sens of Environ, 67: 298-308
[23]  Miller M E, Lefsky M, Pang Y. 2011. Optimization of Geoscience Laser Altimeter System waveform metrics to support vegetation measurements. Remote Sens Environ, 115: 298-305
[24]  NIES GOSAT Project. 2010. Algorithm theoretical basis document for CO2 and CH4 column amounts retrieval from GOSAT TANSO-FTS SWIR, NIES-GOSAT-PO-017, V 1.0
[25]  NIES GOSAT Project. 2012. Summary of the GOSAT Level 2 data Products Validation Activity
[26]  Reynolds R W, Ji M, Leetmaa A. 1998. Use of salinity to improve ocean modeling. Phys Chem Earth, 23: 543-553
[27]  Rosenfeld D. 2000. Suppression of rain and snow by urban and industrial air pollution. Science, 287: 1793-1796
[28]  Scherler D, Bookhagen B, Manfred R S. 2011. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci, 4: 156-159
[29]  Sheperd A, Ivins E, Geruo A, et al. 2012. A reconciled estimate of ice-sheet mass balance. Science, 338: 1183-1189
[30]  Sun G, Ranson K J, Kimes D S, et al. 2008. Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data. Remote Sens Environ, 112: 107-117
[31]  Tebaldini S, Rocca F. 2008. Polarimetric SAR Tomography of forested area: A covariance matching approach. EuSAR 2008
[32]  Taubenbock H, Esch T, Felbier A, et al. 2012. Monitoring urbanization in mega cities from space. Remote Sens Environ, 117: 162-176
[33]  Twohy C H, Durkee P A, Huebert B J, et al. 1995. Effects of aerosol particles on the microphysics of coastal stratiform clouds. J Clim, 8: 773-783
[34]  USGCRP. 2012. US Climate Change Science Program Strategic Plan 2011-2020. Washington D C: the National Academies Press
[35]  Wang C, Tang F, Li L, et al. 2013. Wavelet analysis for waveform decomposition of ICESat/GLAS data and its application in tree height estimation. IEEE Geosci Remote Sensing Lett, 10: 115-119
[36]  Wunch D, Wennberg P O, Toon G C, et al. 2011. A method for evaluating bias in global measurements of CO2 total columns from space. Atmos Chem Phys, 11: 12317-12337
[37]  Yao T, Thompson L, Yang W, et al. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Clim Change, (2): 663-667
[38]  Yokota T, Yoshida Y, Eguchi N, et al. 2009. Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. Sola, 5: 160-163
[39]  Zhang Q, Seto K C. 2011. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS night light data. Remote Sens Environ, 115: 2320-2329
[40]  Zhou J, Li Z, Li X, et al. 2011. Movement estimate of the dongkemadi glacier on the Qinghai-Tibetan Plateau using L-band and C-band spaceborne SAR data. Int J Remote Sens, 32: 6911-6928
[41]  宫鹏. 2012. 拓展与深化中国全境的环境变化遥感应用. 科学通报, 57: 1379-1387
[42]  郭华东. 2010. 全球变化敏感因子的空间观测与认知. 中国科学院院刊, 25: 167-169
[43]  郭华东, 丁翼星, 刘广, 等. 2013a. 面向全球变化探测的月基成像雷达概念研究. 中国科学: 地球科学, 43: 1760-1769
[44]  郭华东, 朱岚巍. 2013b. 空间观测全球变化敏感因子的机理与方法. 中国科学院院刊, 28: 525-530
[45]  雷莉萍, 关贤华, 曾招城, 等. 2013. 基于GOSAT卫星观测的大气CO2浓度与模型模拟的比较. 中国科学: 地球科学, 44: 61-71
[46]  李青侠, 张靖, 郭伟, 等. 2007. 微波辐射计遥感海洋盐度的研究进展. 海洋技术, 26: 58-63
[47]  联合国粮食与农业组织. 2011. 2010年森林资源评估: 主报告. 粮农组织林业文集. 163
[48]  联合国政府间气候变化专门委员会. 2007. 气候变化2007: 综合报告. IPCC, 瑞士, 日内瓦
[49]  廖宏, 朱懿旦. 2010. 全球碳循环与中国百年气候变化. 第四纪研究, 30: 445-455
[50]  施雅风. 2005. 简明中国冰川编目. 上海: 上海科学普及出版社
[51]  姚檀栋. 2003. 要高度重视西部大开发中的冰川水资源问题. 中国科学院院刊, 18: 58-60
[52]  周广胜, 王玉辉, 白莉萍, 等. 2004. 陆地生态系统与全球变化相互作用的研究进展. 气象学报, 62: 692-707
[53]  周建民, 李震, 李新武. 2009. C-band和L-band雷达干涉数据西部冰川区域相干性对比分析. 国土资源遥感, (2): 9-13
[54]  Alonso B, Valladares F. 2008. International efforts on global change research. In: Chuvieco E, ed. Earth Observation of Global Change: The Role of Satellite Remote Sensing in Monitoring the Global Environment. Heidelberg: Springer. 1-21
[55]  Benesch W. 2007. 60 Years Operational Satellites: An overview from the beginning of operational satellite applications at an NMS up to 2030. The Joint 207 EUMETSAT Meteorological Satellite Conference and the 15th American Meteorological Society (AMS) Satellite Meteorological & Oceanography Conference. 24-28
[56]  Boutin J, Martin N, Yin X, et al. 2011. First assessment of SMOS measurements over open ocean: part II. Sea surface salinity. IEEE Trans Geosci Remote Sensing, 99: 1-14
[57]  Bovensmann H, Buchwitz M, Burrows J P, et al. 2010. A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications. Atmos Meas Tech, 3: 781-811
[58]  CEOS (The Committee on Earth Observation Satellites). 2012. The Earth Observation Handbook. UK: Symbios Spazio Ltd

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133