全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南岭多时代花岗岩的钨锡成矿作用

DOI: 10.1007/s11430-013-4736-9, PP. 111-121

Keywords: 南岭,含钨花岗岩,含锡花岗岩,成矿能力,成矿特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

?南岭成矿带以与多时代花岗岩有关的钨锡稀有金属成矿为特色,是我国19个重点成矿区带中5个重点矿产勘察地区之一,南岭花岗岩的基础研究和地质找矿实践不断取得重要进展.本文重点介绍近年来对南岭多时代花岗岩与钨锡成矿作用的主要新认识:(1)南岭地区存在加里东期、印支期和燕山期等多时代钨锡花岗岩.(2)南岭地区燕山期含锡(钨)花岗岩构成北东向分布的准铝质A型花岗岩带,延伸约350km,暗色包体常见,为典型的磁铁矿型花岗岩.(3)燕山早期含锡花岗岩和含钨花岗岩具有不同的岩石学特征,大多含锡花岗岩以准铝质—弱过铝质(含角闪石)黑云母花岗岩为主,而含钨花岗岩则以二云母花岗岩及白云母花岗岩为主,含锡花岗岩锆石的εHf(t)集中在-2~-8,而含钨花岗岩中的锆石的εHf(t)集中在-8~-14,表明含锡花岗岩的物源中明显有地幔物质参与,而含钨花岗岩的物源则以地壳物质为主.(4)基于南岭钨、锡花岗岩的岩石学特征,研究表明榍石、磁铁矿和黑云母等常见矿物是含锡花岗岩成矿能力的有效标志,而黑钨矿等矿物可以作为含钨花岗岩的重要判别标志.本文认为,南岭复式岩体不同时代花岗岩之间的内在联系、南岭不同时代含钨锡花岗岩的成矿特征、南岭含矿长英质岩脉与岩浆演化关系、南岭花岗岩穹窿与成矿关系等应该是今后南岭花岗岩研究中需要重点关注的科学问题.

References

[1]  郭春丽. 2010. 赣南崇义-上犹地区与成矿有关中生代花岗岩类的研究及对南岭地区中生代成矿花岗岩的探讨. 博士学位论文. 北京: 中国地质科学院
[2]  华仁民, 毛景文. 1999. 试论中国东部中生代成矿大爆发. 矿床地质, 18: 300-308
[3]  黄革非, 龚述清, 蒋希伟, 等. 2003. 湖南骑田岭锡矿成矿规律探讨. 地质通报, 22: 445-451
[4]  黄汲清. 1994. 中国主要地质构造单元. 第3版. 北京: 地质出版社. 1287
[5]  黄汲清, 陈廷愚. 1986. 南岭钨、锡矿之多旋回成矿问题. 地质评论, 32: 138-143
[6]  黄汲清, 任纪舜. 1980. 中国大地构造及其演化. 北京: 科学出版社. 124
[7]  康志强, 冯佐海, 杨峰, 等. 2012. 广西桂林地区东部栗木花岗岩体SHRIMP锆石U-Pb年龄. 地质通报, 31: 1306-1312
[8]  李光来, 华仁民, 胡东泉, 等. 2010. 赣南地区石雷石英闪长岩的成因: 岩石化学、副矿物微量元素、锆石U-Pb年代学与Sr-Nd-Hf同位素制约. 岩石学报, 26: 903-918
[9]  李璞, 戴橦谟, 邱纯一, 等. 1963. 内蒙和南岭地区某些伟晶岩和花岗岩的钾-氩法绝对年龄测定. 地质科学, (1): 1-9
[10]  李四光. 1942. 南岭何在? 地质论评, 7: 253-266
[11]  李献华, 李武显, 王选策, 等. 2009. 幔源岩浆在南岭燕山早期花岗岩形成中的作用: 锆石原位Hf-O同位素制约. 中国科学D辑: 地球科学, 39: 872-887
[12]  李兆丽, 胡瑞忠, 彭建堂, 等. 2006. 湖南芙蓉锡矿田流体包裹体的He同位素组成及成矿流体来源示踪. 地球科学, 31: 129-135
[13]  刘勇. 2011. 湘南骑田岭-道县地区燕山期花岗质岩浆的壳-慢相互作用研究. 博士学位论文. 北京: 中国地质科学院
[14]  刘勇, 肖庆辉, 耿树方, 等. 2010. 骑田岭花岗岩体的岩浆混合成因: 寄主岩及其暗色闪长质微细粒包体的锆石年龄和Hf同位素证据. 中国地质, 37: 1081-1091
[15]  龙宝林, 伍式崇, 徐辉煌. 2009. 湖南锡田钨锡多金属矿床地质特征及找矿方向. 地质与勘探, 45: 229-235
[16]  毛景文, 华仁民, 李晓波. 1999. 浅议大规模成矿作用与大型矿集区. 矿床地质, 18: 291-299
[17]  毛景文, 谢桂清, 郭春丽, 等. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14: 510-526
[18]  莫柱荪, 叶伯丹, 潘维祖, 等. 1980. 南岭花岗岩地质学. 北京: 地质出版社. 363
[19]  南京大学地质系. 1966. 华南不同时代花岗岩类及其与成矿关系研究(上、下册). 北京: 中华人民共和国科学技术委员会. 364
[20]  南京大学地质学系. 1981. 华南不同时代花岗岩类及其与成矿关系. 北京: 科学出版社. 395
[21]  舒良树. 2007. 南岭地区地质背景. 见: 周新民, 主编. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化. 北京: 科学出版社. 3-22
[22]  孙涛. 2006. 新编华南花岗岩分布图及其说明. 地质通报, 25: 332-335
[23]  王登红, 唐菊兴, 应立娟, 等. 2010. "五层楼+地下室"找矿模型的迫切性及其对深部找矿的意义. 吉林大学学报(地球科学版), 40: 733-738
[24]  王汝成, 谢磊, 陈骏, 等. 2011. 南岭中段花岗岩中榍石对锡成矿能力的指示意义. 高校地质学报, 17: 368-380
[25]  王汝成, 朱金初, 张文兰, 等. 2008. 南岭地区钨锡花岗岩的成矿矿物学: 概念与实例. 高校地质学报, 14: 485-495
[26]  王永磊, 王登红, 张长青, 等. 2010. 广西德保铜锡矿床辉钼矿Re-Os同位素定年及对加里东期成矿的探讨. 矿床地质, 29: 881-889
[27]  伍静, 梁华英, 黄文婷, 等. 2012. 桂东北苗儿山-越城岭南西部岩体和矿床同位素年龄及华南印支期成矿分析. 科学通报, 57: 1126-1136
[28]  吴寿宁. 2006. 湖南郴州荷花坪锡多金属矿床地质特征. 矿产与地质, 20: 43-46
[29]  谢磊, 王汝成, 陈骏, 等. 2008. 湖南骑田岭花岗岩中的原生含锡榍石: 一个重要的含锡矿物及其找矿指示意义. 科学通报, 53: 3112-3119
[30]  徐克勤, 刘英俊, 俞受均, 等. 1960. 江西南部加里东期花岗岩的发现. 地质论评, 20: 112-114
[31]  徐克勤, 孙鼐, 王德滋, 等. 1963a. 华南多旋回的花岗岩类的侵入时代、岩性特征、分布规律及其成矿专属性的探讨. 地质学报, 43: 1-26
[32]  徐克勤, 孙鼐, 王德滋, 等. 1963b. 华南多旋回的花岗岩类的侵入时代、岩性特征、分布规律及其成矿专属性的探讨. 地质学报, 43: 141-152
[33]  杨锋, 李晓峰, 冯佐海, 等. 2009. 栗木锡矿云英岩化花岗岩白云母40Ar/39Ar年龄及其地质意义. 桂林工学院学报, 29: 20-24
[34]  杨振, 王汝成, 张文兰, 等. 2014. 桂北牛塘界加里东期花岗岩及其矽卡岩型钨成矿作用研究. 中国科学: 地球科学, 44, 已接受
[35]  杨明桂, 梅永文. 1997. 钦-杭古板块结合带与成矿带的主要特征. 华南地质与矿产, (3): 52-59
[36]  郑佳浩, 郭春丽. 2012. 湘南王仙岭花岗岩体的锆石U-Pb年代学、地球化学、锆石Hf同位素特征及其地质意义. 岩石学报, 28: 75-90
[37]  张芳荣, 舒良树, 王德滋, 等. 2009. 华南东段加里东期花岗岩类形成构造背景探讨. 地学前缘, 16: 248-260
[38]  章荣清. 2010. 荷花坪锡多金属矿区花岗岩地质地球化学及成矿特征. 硕士学位论文. 南京: 南京大学. 1-69
[39]  张文兰, 王汝成, 雷泽恒, 等. 2011. 湘南彭公庙加里东期含白钨矿细晶岩脉的发现. 科学通报, 56: 1448-1454
[40]  赵葵东, 蒋少涌, 朱金初, 等. 2009. 桂东北花山-姑婆山侵入杂岩体和暗色包体的锆石微区Hf同位素组成及其成岩指示意义. 科学通报, 54: 3716-3725
[41]  赵振华, 包志伟, 张伯友, 等. 2000. 柿竹园超大型钨多金属矿床形成的壳幔相互作用背景. 中国科学D辑: 地球科学, 30(增刊): 161-168
[42]  中国科学院地球化学研究. 1979. 华南花岗岩类的地球化学. 北京: 科学出版社. 421
[43]  朱金初, 刘伟新, 周凤英. 1993. 香花岭431岩脉中翁岗岩和黄英岩及空间分带和成因关系. 岩石学报, 9: 158-166
[44]  朱金初, 陈骏, 王汝成, 等. 2008. 南岭中西段燕山早期北东向含锡钨A型花岗岩带. 高校地质学报, 14: 474-484
[45]  朱金初, 张佩华, 谢才富, 等. 2006. 南岭西段花山-姑婆山A型花岗质杂岩带: 岩石学、地球化学和岩石成因. 地质学报, 80: 529-542
[46]  Bastos Neto A C, Pereira V P, Ronchi L H, et al. 2009. The world-class Sn, Nb, Ta, F (Y, REE, Li) deposit and the massive cryolite associated with the albite-enriched facies of the Madeira A-type granite, Pitinga mining district, Amazonas State, Brazil. Can Mineral, 47: 1329-1357
[47]  Bhalla P, Holtz F, Linnen R L, et al. 2005. Solubility of cassiterite in evolved granitic melts: Effect of T, fO2, and additional volatiles. Lithos, 80: 387-400
[48]  Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold-rich ore systems. Resour Geol, 54: 241-252
[49]  Che X D, Linnen R L, Wang R C, et al. 2013. Tungsten solubility in evolved granitic melts: An evaluation of magmatic wolframite. Geochim Cosmochim Acta, 106: 84-98
[50]  Chen J, Halls C, Stanley C J. 1992. Mineral association and mineralogical criteria for the formation condition of a B-F-Sn-Bi skarn in Damoshan, Gejiu tin field, Southwest China. Chin J Geochem, 11: 140-155
[51]  Cuney M, Marignac C, Weisbrod A. 1992. The Beauvoir topaz-lepidolite albite granite (Massif-Central, France)—The disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Econ Geol, 87: 1766-1794
[52]  Farges F, Linnen R L, Brown G E Jr. 2006. Redox and speciation of tin in hydrous silicate glasses: A comparison with Nb, Ta, Mo and W. Can Mineral, 44: 795-810
[53]  Frost C D, Raemoe O T, Dall’Agnol R. 2007. IGCP project 510-A-type granites and related rocks through time. Lithos, 97: VII-XIII
[54]  Gilder S A, Gill J, Coe R S, et a1. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. J Geophys Res, 101: 16137-16154
[55]  Gilder S A, Keller G R, Luo M, et al. 1991. Timing and spatial distribution of rifting in China. Tectonophys, 197: 225-243
[56]  Haapala I. 1997. Magmatic and postmagmatic processes in tin-mineralized granites: Topaz-bearing leucogranite in the Eurajoki Rapakivi granite stock. Finland J Petrol, 38: 1645-1659
[57]  He Z Y, Xu X S, Zou H B, et al. 2010. Geochronology, petrogenesis and metallogeny of Piaotang granitoids in the tungsten deposit region of South China. Geochem J, 44: 299-313
[58]  Hsü K J, Li J L, Chen H H, et al. 1990. Tectonics of South China-Key to understanding West Pacific geology. Tectonophys, 183: 9-39
[59]  Huang H Q, Li X H, Li W X, et al. 2011. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology, 39: 903-906
[60]  Kalsbeek F, Jepsen H F, Nutman A P. 2001. From source migmatites to plutons: Tracking the origin of ca. 435 Ma S-type granites in the East Greenland Caledonian orogeny. Lithos, 57: 1-21
[61]  Lehmann B. 1982. Metallogeny of tin: Magmatic differentiation versus geochemical heritage. Econ Geol, 77: 50-59
[62]  Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179-182
[63]  Linnen R L, Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen R L, Samson I M, eds. Rare-Element Geochemistry and Mineral Deposits. Geol Ass Can GAC Short Course Notes, 17: 45-67
[64]  Linnen R L, Pichavant M, Holtz F, et al. 1995. The effect of ?O2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850°C and 2 kbar. Geochim Cosmochim Acta, 59: 1579-1588
[65]  蔡明海, 陈开旭, 屈文俊. 2006. 湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年. 矿床地质, 25: 263-268
[66]  车旭东. 2011. 花岗岩成矿体系中钨结晶行为的矿物学与实验地球化学研究. 博士学位论文. 南京: 南京大学
[67]  陈骏, 陆建军, 陈卫峰, 等. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14: 459-473
[68]  陈骏, 王汝城, 周建平, 等. 2000. 锡的地球化学. 南京: 南京大学出版社. 320
[69]  陈毓川, 毛景文. 1995. 桂北地区矿床成矿系列和成矿历史演化轨迹. 南宁: 广西科学技术出版社. 433
[70]  陈毓川, 裴荣富, 张宏良, 等. 1989. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质. 北京: 地质出版社. 507
[71]  程顺波, 付建明, 徐德明, 等. 2009. 桂东北大宁岩体锆石SHRIMP年代学和地球化学研究. 中国地质, 36: 1278-1288
[72]  地矿部南岭项目花岗岩专题组. 1989. 南岭花岗岩地质及成因和成矿. 北京: 地质出版社. 471
[73]  杜绍华, 黄蕴慧. 1984. 香花岭岩的研究. 中国科学B辑, 11: 1039-1047
[74]  付建明, 马昌前, 谢才富, 等. 2004. 湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义. 大地构造与成矿学, 28: 370-378
[75]  古菊云. 1981. 华南钨矿脉的形态分类. 见: 钨矿地质讨论会论文集. 北京: 地质出版社. 35-45
[76]  Muir R J, Ireland T R, Weaver S D, et al. 1994. Ion microprobe U-Pb zircon geochronology of granitic magmatism in the western Province of the South-Island, New-Zealand. Chem Geol, 113: 171-189
[77]  Paul B J, ?erny P, Chapman R, et al. 1981. Niobian titanite from the Huron Claim pegmatite, southeastern Manitoba. Can Mineral, 19: 549-552
[78]  Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol, 25: 956-983. J Petrol, 25: 956-983
[79]  Shu X J, Wang X L, Sun T. et al. 2011. Trace elements, U-Pb ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling Range, South China: Implications for petrogenesis and W-Sn mineralization. Lithos, 127: 468-482
[80]  Sillitoe R H. 1974. Tin mineralisation above mantle hot spots. Nature, 248: 497-499
[81]  Skirrow R G, Bastrakov E N, Baroncii K. et al. 2007. Timing of iron oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler craton, south Australia. Econ Geol, 102: 1441-1470
[82]  Soper N J. 1986. The newer Granite problem: A geotectonic view. Geolo Mag, 123: 227-236
[83]  ?temprok M. 1990. Solubility of tin, tungsten and molybdenum oxides in felsic magmas. Mineral Depos, 25: 205-212
[84]  Takagi T, Tsukimura K. 1997. Genesis of oxidized- and reduced-type granites. Econ Geol, 92: 81-86
[85]  Wang R C, Fontan F, Chen X M, et al. 2003. Accessory minerals in the Xihuashan Y-enriched granitic complex, Southern China: A record of magmatic and hydrothermal stages of evolution. Can Mineral, 41: 727-748
[86]  Wang R C, Yu A P, Chen J. et al. 2012. Cassiterite exsolution with ilmenite lamellae in magnetite from the Huashan metaluminous tin granite in southern China. Mineral Petrol, 105: 71-84
[87]  Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol, 95: 407-419
[88]  Williams I S, Chappell B W, Chen Y D, et al. 1992. Inherited and detrital zircons-vital clues to the granite protoliths and early igneous history of southeastern Australia. Trans Roy Soc Edinb: Earth Sci, 83: 503
[89]  Xie L, Wang R C, Chen J. et al. 2010. Mineralogical evidence for magmatic and hydrothermal processes in the Qitianling oxidized tin-bearing granite (Hunan, South China): EMP and (MC)-LA-ICPMS investigations of three types of titanite. Chem Geol, 276: 53-68
[90]  Xu K Q, Sun N, Wang D Z, et al. 1984. Geology of granites and their metallogenetic relations. In: Xu K Q, Tu G C, eds. Eology of Granites and Their Metallogenetic Relations. Beijing: Science Press. 1-31
[91]  Zhao K D, Jiang S Y, Yang X Y. et al. 2012. Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Res, 22: 310-324Zhou X M, Sun T, Shen W Z, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29: 26-33

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133