全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国大陆上地幔各向异性和壳幔变形模式

DOI: 10.1007/s11430-013-4675-5, PP. 98-110

Keywords: 剪切波分裂,上地幔各向异性,岩石圈变形,软流圈流动,绝对板块运动

Full-Text   Cite this paper   Add to My Lib

Abstract:

?近10年来,中国布设的宽频带地震台站大幅度增加.宽频带地震记录中含有大量的剪切波分裂信息,它在揭示中国大陆上地幔的各向异性特征起重要作用.本文对这些台站的远震SKS和(或)SKKS记录,采用最小切向能量的分析方法,确定各台站剪切波分裂的快波偏振方向和延迟时间.此外,还收集了前人在中国大陆及其周边地区的剪切波分裂研究的部分结果,形成拥有1020个剪切波分裂参数对的数据集.这些分裂参数展示了复杂的上地幔各向异性图像.统计分析表明,中国大陆存在较强的上地幔各向异性,平均的剪切波时间延迟为0.95s,其中西部地区为1.01s,东部地区为0.92s.西部地区的各向异性强度略大于东部地区.在大尺度意义下,青藏高原及天山地区,其SKS波分裂和地表变形数据共同支持岩石圈变形模式,即地壳与岩石圈地幔是连贯变形的;东部地区的平均快波偏振方向近似平行于绝对板块运动方向,上地幔各向异性归因于软流圈流动.中部的鄂尔多斯至四川盆地一带为东、西部两种变形模式的过渡带,各向异性结构较为复杂,表现为“化石”各向异性和(或)双层各向异性.印度板块和欧亚板块的碰撞是中国大陆西部上地幔各向异性的主要影响因素,东部地区则与太平洋板块和菲律宾板块向欧亚板块俯冲有关.

References

[1]  常利军, 王椿镛, 丁志峰. 2006. 云南地区SKS波分裂研究. 地球物理学报, 49: 197-204
[2]  常利军, 王椿镛, 丁志峰. 2011. 鄂尔多斯块体及周缘上地幔各向异性研究. 中国科学: 地球科学, 41: 686-699
[3]  邓晋福, 莫宣学, 赵海玲, 等. 1994. 中国东部岩石圈根/去根作用与大陆"活化". 现代地质, 8: 349-356
[4]  丁志峰, 曾融生. 1996. 青藏高原上地幔横波各向异性的探测研究. 地球物理学报, 39: 211-220
[5]  姜枚, 许志琴, Hirn A, 等. 2001. 青藏高原及其部分邻区地震各向异性和上地幔特征. 地球学报, 22: 111-116
[6]  吕庆田, 马开义, 姜枚, 等. 1996. 青藏高原南部下方的横波各向异性. 地震学报, 18: 215-223
[7]  罗艳, 黄忠贤, 彭艳菊, 等. 2004. 中国大陆及邻区SKS波分裂研究. 地球物理学报, 47: 812-821
[8]  牛之俊, 王敏, 孙汉荣, 等. 2005. 中国大陆现今地壳运动速度场的最新观测结果. 科学通报, 50: 839-848
[9]  任纪舜, 姜春发, 张正坤, 等. 1980. 中国大地构造及其演化——1:400万中国大地构造图简要说明. 北京: 科学出版社. 124
[10]  徐震, 徐鸣洁, 王良书, 等. 2006. 用接收函数Ps转换波研究地壳各向异性——以哀牢山-红河断裂带为例. 地球物理学报, 49: 438-448
[11]  王椿镛, 常利军, 吕智勇, 等. 2007. 青藏高原东部上地幔各向异性及相关的壳幔耦合型式. 中国科学D辑: 地球科学, 37: 495-503
[12]  吴福元, 孙德有. 1999. 中国东部中生代岩浆作用与岩石圈减薄. 长春科技大学学报, 29: 313-318
[13]  郑斯华, 高原. 1994. 中国大陆岩石层的方位各向异性. 地震学报, 16: 131-140
[14]  郑秀芬, 欧阳飚, 张东宁, 等. 2009. "国家数字测震台网数据备份中心"技术系统建设及其对汶川大地震研究的数据支撑. 地球物理学报, 52: 1412-1417
[15]  Alsina D, Snieder R. 1995. Small-scale sublithospheric continental mantle deformation: Constrains from SKS splitting observations. Geophys J Int, 123: 431-448
[16]  An M, Shi Y. 2006. Lithospheric thickness of the Chinese Continent. Phys Earth Planet Int, 159: 257-266
[17]  Bai L, Iidaka T, Kawakatsu H, et al. 2009. Upper mantle anisotropy beneath Indochina block and adjacent regions from shear-wave splitting analysis of Vietnam broadband seismograph array data. Phys Earth Planet Int, 176: 33-43
[18]  Barruol G, Deschamps A, Deverchere J, et al. 2008. Upper mantle flow beneath and around the Hangay dome, central Mongolia. Earth Planet Sci Lett, 274: 221-233
[19]  Barruol G, Silver P G, Vauchez A. 1997. Seismic anisotropy in the eastern US: Deep structure of a complex continental plate. J Geophys Res, 102: 8329-8348
[20]  Ben-Ismail W, Barruol G, Mainprice D. 2001. The Kaapvaal craton seismic anisotropy: Petrophysical analysis of upper mantle kimberlite nodules. Geophys Res Lett, 28: 2497-2500
[21]  Carbonell R, Gallart J, Perez-Estaun A, et al. 2000. Seismic wide-angle constraints on the crust of the southern Urals. J Geophys Res, 105: 13755-13777
[22]  Chang L J, Wang C Y, Ding Z F. 2012. Upper mantle anisotropy beneath the North China from shear wave splitting measurements. Tectonophysics, 522: 235-242
[23]  Chen L, Zheng T Y, Xu W W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J Geophys Res, 111: B09312, doi: 10.1029/2005JB003974
[24]  Chen W P, Martin M, Tseng T L, et al. 2010. Shear-wave birefringence and current configuration of converging lithosphere under Tibet. Earth Planet Sci Lett, 295: 297-304
[25]  Chen Y P, Wang L S, Mi N, et al. 2005. Shear wave splitting observations in the Chinese Tianshan orogenic belt. Geophys Res Lett, 32: L07306, doi: 10.1029/2004GL021686
[26]  Chevrot S. 2000. Multichannel analysis of shear wave splitting. J Geophys Res, 105: 21579-21590
[27]  Christensen N I. 1984. Pore pressure and oceanic crustal seismic structure. Geophys J Royal Astron Soc, 79: 411-424
[28]  Davis P, England P, Houseman G A. 1997. Comparison of shear wave splitting and finite strain from the India-Asia collision zone. J Geophys Res, 102: 27511-27522.
[29]  DeMets C, Gordon R G, Argus D F, et al. 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motions. Geophys Res Lett, 21: 2191-2194
[30]  Dricker I G, Roecker S W, Vinnik L P, et al. 2002. Upper-mantle anisotropy beneath the Altai-Sayan region of central Asia. Phys Earth Planet Int, 131: 205-223
[31]  England P C, Molnar P. 1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature, 344: 140-142
[32]  Flesch L M, Haines A J, Holt W E. 2001. Dynamics of the India-Eurasia collision zone. J Geophys Res, 106: 16435-16460
[33]  Flesch L M, Holt W E, Silver P G, et al. 2005. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth Planet Sci Lett, 238: 248-268
[34]  Fouch M J, Fischer K M. 1996. Mantle anisotropy beneath northwest Pacific subduction zones. J Geophys Res, 101: 15987-16002
[35]  Fu Y V, Chen Y J, Li A, et al. 2008. Indian mantle corner flow at southern Tibet revealed by shear wave splitting measurements. Geophys Res Let, 35: L02308, doi: 10.1029/2007GL031753
[36]  Fukao Y. 1984. Evidence from core-reflected shear waves for anisotropy in the Earth’s mantle. Nature, 309: 695-698
[37]  Gao S, Davis P M, Liu H, et al. 1994. Seismic anisotropy and mantle flow beneath the Baikal rift zone. Nature, 71: 149-151
[38]  Gao S, Liu K H. 2009. Significant seismic anisotropy beneath the southern Lhasa Terrane, Tibetan Plateau. Geochem Geophys Geosyst, 10: Q02008, doi: 10.1029/2008GC002227
[39]  Griffin W L, Zhang A, O’Reilly S Y, et al. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M, Chung S L, Lo C H, et al., eds. Mantle Dynamics and Plate Interactions in East Asia. Geodynamics, 27: 107-126
[40]  Guilbert J, Poupinet G, Jiang M. 1996. A study of azimuthal P residuals and shear-wave splitting across the Kunlun range (Northern Tibetan Plateau). Phys Earth Planet Int, 95: 167-174
[41]  Herquel G, Tapponnier P, Wittlinger G, et al. 1999. Teleseismic shear wave splitting and lithospheric anisotropy beneath and across the Altyn Tagh faul. Geophys Res Lett, 26: 3225-3228
[42]  Herquel G, Tapponier P. 2005. Seismic anisotropy in western Tibet. Geophys Res Lett, 32: doi: 10.1029/2005GL023561
[43]  Hirn A, Jiang M, Sapin M, et al. 1995. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet. Nature, 375: 571-574
[44]  Liu K H, Gao S S, Gao Y, et al. 2008, Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia. J Geophys Res, 113: doi: 10.1029/2007JB005178
[45]  Long M D, van der Hilst R D. 2005. Upper mantle anisotropy beneath Japan from shear wave splitting. Phys Earth Planet Int, 151: 206-222
[46]  Huang B S, Huang W G, Liang W T, et al. 2006. Anisotropy beneath an active collision orogen of Taiwan: Results of across island array observation. Geophys Res Lett, 33: L24302, doi: 10.1029/2006GL027844
[47]  Huang W C, Ni J F, Tilmann F, et al. 2000. Seismic polarization anisotropy beneath the central Tibetan Plateau. J Geophys Res, 105: 27979-27989
[48]  Huang Z X, Su W, Peng Y, et al. 2003. Rayleigh wave tomography of China and adjacent regions. J Geophys Res, 108: 2073
[49]  Huang Z, Xu M, Wang L, et al. 2008. Shear wave splitting in the southern margin of the Ordos Block, north China. Geophys Res Lett, 35: L19301, doi: 10.1029/2008GL035188
[50]  Iidaka T, Niu F. 2001. Mantle and crust anisotropy in the eastern China region inferred from waveform splitting of SKS and PpSms. Earth Planet Space, 53: 159-168
[51]  Kumar M, Singh A. 2008. Evidence for plate motion related strain in the Indian shield from shear wave splitting measurements. J Geophys Res, 113: doi: 10.1029/2007JB005128
[52]  Lev E, Long M D, van der Hilst R D. 2006. Seismic anisotropy in eastern Tibet from shear-wave splitting reveals changes in lithospheric deformation. Earth Planet Sci Lett, 251: 293-304
[53]  Li A, Chen C. 2006. Shear wave splitting beneath the central Tian Shan and its tectonic implications. Geophys Res Lett, 33: doi: 10.1029.2006GL027717
[54]  Li S L, Mooney W D, Fan J. 2006. Crustal structure of mainland China from deep seismic sounding data. Tectonophysics, 420: 239-252
[55]  Li Y, Wu Q, Jiang L, et al. 2010. Complex seismic anisotropic structure beneath the central Tien Shan revealed by shear wave splitting analyses. Geophys J Int, 181: 1678-1686
[56]  Long M D, Silver P G. 2008. The subduction zone flow field from seismic anisotropy: A global view. Science, 319: 315-318
[57]  Mainprice D, Silver P G. 1993. Interpretation of SKS using samples from the subcontinental lithosphere. Phys Earth Planet Int, 78: 257-280
[58]  Makeyeva L I, Vinnik L P, Roecker S W. 1992. Shear-wave splitting and small-scale convection in the continental upper mantle. Nature, 358: 144-147
[59]  Marone F, Romanowicz B. 2007. The depth distribution of azimuthal anisotropy in the continental upper mantle. Nature, 447: 198-201
[60]  McNamara D, Owens T. 1993. Azimuthal Shear wave velocity anisotropy in the Basin and Range province using Moho Ps converted phases. J Geophys Res, 98: 12003-12017
[61]  McNamara D, Owens T, Silver P G, et al. 1994. Shear-wave anisotropy beneath the Tibetan Plateau. J Geophys Res, 99: 13655-13665
[62]  Menke W, Levin V. 2003. The cross-convolution method for interpreting SKS splitting observations, with application to one and two-layer anisotropic earth models. Geophys J Int, 154: 379-392
[63]  Nicolas A, Boudier F, Boullier A M. 1973. Mechanisms of flow in naturally and experimentally deformed peridotites. Am J Sci, 273: 853-876
[64]  Priestley K, Debayle E, McKenzie D, et al. 2006. Upper mantle structure of eastern Asia from multi-mode surface waveform tomography. J Geophys Res, 111: B10304, doi: 10.1029/2005JB004082
[65]  Rau R J, Liang W, Kao H, et al. 2000. Shear wave anisotropy beneath the Taiwan orogen. Earth Planet Sci Lett, 177: 177-192
[66]  Readman P W, Hauser F, O’Reilly B M, et al. 2009. Crustal anisotropy in southwest Ireland from analysis of controlled source shear-wave data. Tectonophysics, 474: 571-583
[67]  Sandvol E A, Ni J F, Kind R, et al. 1997. Seismic anisotropy beneath the southern Himalayas-Tibet collision zone. J Geophys Res, 102: 17813-17823.
[68]  Satarugsa P, Johnson R A. 2000. Constraints on crustal composition beneath a metamorphic core complex: results from 3-component wide-angle seismic data along the eastern flank of the Ruby Mountains, Nevada. Tectonophysics, 329: 223-250
[69]  Silver P G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annu Rev Earth Planet Sci, 24: 385-432
[70]  Silver P G, Chan W W. 1988. Implications for continental structure and evolution from seismic anisotropy. Nature, 335: 34-39
[71]  Silver P G, Chan W W. 1991. Share-wave splitting and subcontinental mantle deformation. J Geophys Res, 96: 16429-16454
[72]  Silver P G, Holt W E. 2002. The mantle flow field beneath western North America. Science, 295: 1054-1057
[73]  Silver P G, Savage M. 1994. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophys J Int, 119: 949-963
[74]  Singh A, Kumar M R, Raju P S, et al. 2006. Shear wave anisotropy of the northeast Indian lithosphere. Geophys Res Lett, doi: 10.1029/2006GL026106
[75]  Singh A, Kumar M R, Raju P S. 2007. Mantle deformation in Sikkim and adjoining Himalaya: Evidences for a complex flow pattern. Phys Earth Planet Int, 164: 232-241
[76]  Sodoudi F, Yuan X, Liu Q, et al. 2006. Lithospheric thickness beneath the Dabie Shan, central eastern China from S receiver functions. Geophys J Int, 166: 1363-1367
[77]  Sol S, Meltzer A, Burgmann R, et al. 2007. Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy. Geology, 35: 563-566
[78]  Vecsey L, Plomerová J, Babuska V. 2008. Shear-wave splitting measurements—Problems and solutions. Tectonophysics, 462: 178-196
[79]  Vinnik L, Kosarev G L, Makeyeva L I. 1984. Anisotropy of the lithosphere from the observations of SKS and SKKS phases. Proc Acad Sci USSR, 278: 1335-1339
[80]  Vinnik L P, Makeyeva L I, Milev A, et al. 1992. Global Patterns of azimuthal anisotropy and deformation in the continental mantle. Geophys J Int, 111: 433-447
[81]  Wang C Y, Flesch L M, Silver P G, et al. 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36: 363-366
[82]  Wang Q, Zhang P, Frevmuller J T, et al. 2001. Present-day crustal deformation in China constrained by global positional system measurements. Science, 294: 574-577
[83]  Weiss T, Siegesmund S, Rabbel W, et al. 1999. Seismic velocities and anisotropy of the lower continental crust: A review. Pure Appl Geophys, 156: 97-122
[84]  Wolfe C J, Silver P G. 1998. Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations. J Geophys Res, 1998, 103: 749-771
[85]  Wolfe C J, Vernon III F L. Shear-wave splitting at central Tien Shan: Evidence for rapid variation of anisotropic patterns. Geophys Res Lett, 25: 1217-1220
[86]  Wu J, Gao Y, Chen Y T. 2008. Crustal seismic anisotropy in Southeastern Capital area, China. Acta Seism Sin, 21: 1-10
[87]  Zhang S, Karato S I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375: 774-777
[88]  Zhang Z M, Liou J G, Coleman R G. 1984. An outline of the plate tectonics of China. Geol Soc Am Bull, 95: 295-312
[89]  Zhao L, Zheng T Y. 2005. Using shear wave splitting measurements to investigate the upper mantle anisotropy beneath the North China Craton: Distinct variation from east to west. Geophys Res Lett, 32: L10309, doi: 10.1029/2005GL022585

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133